Exact solutions to an evolution equation of plastic layer flow on a plane
- Авторы: Kadymov V.A.1, Sosenushkin E.N.2, Yanovskaya E.A.1
-
Учреждения:
- Department of Applied Mathematics
- Department of Plastic Deformation
- Выпуск: Том 71, № 3 (2016)
- Страницы: 69-72
- Раздел: Brief Communications
- URL: https://journals.rcsi.science/0027-1330/article/view/164364
- DOI: https://doi.org/10.3103/S0027133016030043
- ID: 164364
Цитировать
Аннотация
The flow of a thin plastic layer between two rigid plates approaching each other in the normal direction is considered. The kinematics of plastic layer flow is studied. An evolution equation describing the free boundary of the flow region is derived. The similarity solutions to this equation are analyzed. It is shown that the evolution equation can be reduced to a particular case of the nonlinear heat conduction equation. New exact particular solutions to the evolution equation are obtained using the variable separation method and the method of self-similar transformations.
Об авторах
V. Kadymov
Department of Applied Mathematics
Автор, ответственный за переписку.
Email: vkadymov@yandex.ru
Россия, ulitsa Losinoostrovskaya 49, Moscow, 107150
E. Sosenushkin
Department of Plastic Deformation
Email: vkadymov@yandex.ru
Россия, Vadkovskii pereulok 1, Moscow, 127055
E. Yanovskaya
Department of Applied Mathematics
Email: vkadymov@yandex.ru
Россия, Vadkovskii pereulok 1, Moscow, 127055
Дополнительные файлы
