Uniqueness of weak solutions to dynamic problems in the elasticity theory with boundary conditions of Winkler and inertial types
- Авторы: Israilov M.S.1, Nosov S.E.1
-
Учреждения:
- Institute of Mathematical Physics and Seismodynamics
- Выпуск: Том 71, № 3 (2016)
- Страницы: 65-68
- Раздел: Brief Communications
- URL: https://journals.rcsi.science/0027-1330/article/view/164362
- DOI: https://doi.org/10.3103/S0027133016030031
- ID: 164362
Цитировать
Аннотация
A uniqueness theorem for the weak solution of an initial-boundary value problem in the anisotropic elasticity theory with the boundary conditions that “do not conserve” energy, namely, with the impedance and inertial type conditions is proved. The chosen method of proof does not require the positive definiteness of the elastic constant tensor (the case that may arise when solving the problems by the homogenization method for composite materials), but it requires to take the energy variation law as a postulate.
Об авторах
M. Israilov
Institute of Mathematical Physics and Seismodynamics
Автор, ответственный за переписку.
Email: israilov@hotmail.com
Россия, bul’var Dudaeva 17, Grozny, 364907
S. Nosov
Institute of Mathematical Physics and Seismodynamics
Email: israilov@hotmail.com
Россия, bul’var Dudaeva 17, Grozny, 364907
Дополнительные файлы
