Formulation of Problems in the General Kirchhoff—Love Theory of Inhomogeneous Anisotropic Plates


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper we study the procedure of reducing the three-dimensional problem of elasticity theory for a thin inhomogeneous anisotropic plate to a two-dimensional problem in the median plane. The plate is in equilibrium under the action of volume and surface forces of general form. À notion of internal force factors is introduced. The equations for force factors (the equilibrium equations in the median plane) are obtained from the thickness-averaged three-dimensional equations of elasticity theory. In order to establish the relation between the internal force factors and the characteristics of the deformed middle surface, we use some prior assumptions on the distribution of displacements along the thickness of the plate. To arrange these assumptions in order, the displacements of plate points are expanded into Taylor series in the transverse coordinate with consideration of the physical hypotheses on the deformation of a material fiber being originally perpendicular to the median plane. The well-known Kirchhoff—Love hypothesis is considered in detail. À closed system of equations for the theory of inhomogeneous anisotropic plates is obtained on the basis of the Kirchhoff—Love hypothesis. The boundary conditions are formulated from the Lagrange variational principle.

Sobre autores

V. Gorbachev

Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: vigorby@mail.ru
Rússia, Leninskie Gory, Moscow, 119899

L. Kabanova

Faculty of Mechanics and Mathematics

Email: vigorby@mail.ru
Rússia, Leninskie Gory, Moscow, 119899

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018