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Abstract. High-throughput transcriptomic research methods provide the assessment of a vast number
of factors, valuable for researchers. At the same time the “curse of dimensionality” issues arise, which
lead to increasing requirements on data processing and analysis methods. In this study, we propose a
new algorithm that combines Monte Carlo methods and machine learning. This algorithm will enable
feature space reduction by highlighting genes most likely associated with the investigated diseases.
Our approach allows not only to generate a set of “interesting” genes but also to assign weight to each
gene, indicating its “importance”. This measure can be used in subsequent statistical analysis,
visualization, and interpretation of results. Algorithm performance was demonstrated on open
transcriptomic data of patients with HCM (GSE36961 and GSE1145). The analysis revealed genes
MYHG6, FCN3, RASD1, and SERPINA3, which is in good agreement with the available literature.
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INTRODUCTION

Transcriptomics and high-throughput research methods such as RNA sequencing (RNA-seq)
or microarrays (MicroArray) today undoubtedly occupy an important place in the arsenal of tools for
studying the molecular mechanisms of biological systems, the pathogenesis of various diseases and
the search for their markers.[1].

Identification of differentially expressed genes (DEGs) or transcripts under different
conditions (comparison groups) is one of the important tasks of transcriptome profiling. Differential
expression data are usually presented in a matrix format, where each row corresponds to a gene (or
transcript), and each column corresponds to a sample, with the cells indicating the gene expression
level in the sample.[2]. The main research problem is to detect statistically significant DEGs between
different groups of samples (e.g. healthy and sick). One of the frequent problems that arise in statistical
processing of such data is related to the “curse of dimensionality”[3].

The “curse of dimensionality” is a phenomenon in which the feature space increases with
increasing number of dimensions or input variables, which can lead to increased noise and erroneous
conclusions. The average feature space dimensionality of transcriptome profiling data is over 10,000.
The average sample size is less than 100 points. Thus, despite the richness of information obtained by
high-throughput methods, interpretation of these data can be challenging due to the large number of
genes and small number of samples.

Standard means of solving the indicated problem include various tools for adjusting valuesp-
value with multiple comparisons, widely used inside popular packages like EdgeR[4]or Limma[5].

In this paper, we propose a new approach based on machine learning (ML) methods for
reducing data dimensionality and identifying key genes with the highest chance of being associated
with the studied disease, followed by the application of weighted correction procedures for multiple
comparisons. The weights for adjusting p -values are also obtained using ML methods.

The essence of the approach is to use Monte Carlo simulations to generate classifiers with high
generalization ability on transcriptome profiling data. Then, features important for their operation, or
key genes, are extracted from these classifiers, and a reduced feature space is formed for subsequent
testing of association hypotheses using standard methods. The resulting feature space will also be a
weighted space, i.e., with a weight function or measure defined on it. The weight will be defined as
the proportion of models in which the gene was included, multiplied by the ROC-AUC quality metric,

averaged across these models. This weight will be used when conducting weighted correction
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procedures for multiple hypothesis testing, such as weighted Bonferroni, Holm, or Benjamini-
Hochberg methods.

Initially, the listed weighted correction methods were developed to account for prior
information [6, 7] . Currently, most of the work devoted to the development of these methods reduces
to the problem of maximizing the power of statistical tests by the weight vector [8, 9] . In the presented
work, we propose to return to the classical formulation with the assignment of weight coefficients
reflecting some prior information, which we obtain from the data ( data driven approach ), namely
from the effectiveness of classifiers. In other words, as described above, the more well-performing
classifiers a gene is included in during Monte Carlo simulations, the higher its weight.

Thus, in the presented study, instead of the common approach (from fundamental observations
of transcriptome changes in various conditions to creating a classifier for the purposes of applied
medicine), we propose to go in the opposite direction: from effectively working classifiers to
understanding pathogenetic processes leading to changes in the transcriptome, which are captured by
these classifiers.

To demonstrate the proposed approach, open data of transcriptome profiling of patients with

hypertrophic cardiomyopathy (HCM) were selected: GSE36961 and GSE1145.

METHODS

Fig. 1. Study design.

Briefly, at the first stage, we begin with downloading and preprocessing the GSE36961 dataset
according to the standard protocol [5] . For training classifiers, we form a data matrix of sizen X m ,
where n is the number of observations, m is the number of features/genes; the dependent variable is
a vector of (0, 1), where 0 means absence of HCM, 1 means presence of HCM. The classification task
is set to learn to predict "presence of HCM" based on a feature vector (gene expression levels).

To search for genes involved in the pathogenesis of HCM, we used the Monte - Carlo method
to simulate L1-regularized classifiers based on logistic regression. L1-regularization allows thinning
of the feature space, leaving only the most significant features (genes) in the classification model.
Using this property, we will perform feature selection. Then we trained 3000 models (conducted 3000
simulations), extracting the training sample according to the sampling with replacement scheme. Only
observations (rows) were extracted. Genes (features, columns) were not extracted. Each observation

(row) was extracted with replacement with equal probability and independently. The test sample was
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formed from observations that did not make it into the training sample. As a result, the training and
test samples were formed in an approximate ratio of 8:2. Thus, we do not rely on a single model, but
simulate many different experiments on various samples obtained by extracting the original sample.

Before launching the algorithm, the regularization coefficient was selected to minimize the
decrease in model quality according to the ROC-AUC metric. The coefficient selection and quality
assessment were carried out on a labeled training dataset using cross-validation. Thus, we allow
overfitting but retain the maximum number of genes, based on the idea that unreliable features will
be less frequently included in the model, which will directly affect their weight.

Based on the trained models, we compiled a set of selected genes, which were assigned weights

according to the following formula:

Z[ I.L;r.rar__.Emr.lrh"f. ::I Z{ RU(I‘A U ("J * Igr'rjq'_lEmmfc'f_. ]
n Z{ I;::'HPJEMM:'!, }

(M

weight gene, =

where: Igenejemodeli — indicator of the inclusion of the j-th gene in the i-th model, ROCAUC; —ROC-

AUC metric for the i-model, n — number of iterations.

Thus, the weight is defined as the proportion of models in which the gene was included,
multiplied by the ROC-AUC quality metric averaged over these models. The ROC-AUC of the model
is included in the calculation of the gene weight to distinguish genes selected in the same number of
models but differing in classification quality. Subsequently, we will be interested in genes that are
most often included in the best classifiers. In this case, the assigned weight will allow us to relevantly
order the list of genes for their subsequent processing. Genes that are part of less than 5% of models
and have low weight will be excluded from further consideration.

Validation of the results was performed on an independent dataset ( GSE1145 ), which was
not used during training or testing. For association assessment (testing the hypothesis of left or right
shift), we used the non-parametric Mann-Whitney test [10] , Benjamini - Hochberg - correction for
multiple comparisons [11] , as well as the weighted Benjamini - Hochberg correction for multiple
comparisons according to the scheme described in [12] .

Statistical tests were conducted using the SciPy module version: 1.7.3. For model training,
testing, and data preprocessing, we used the sklearn module version: 0.24.2 [13] .

The algorithm code is available at: https://github.com/GJOsmak/MolBi012024 .
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RESEARCH RESULTS

In total, the GSE36961 chip contains 37846 transcripts. After data preprocessing, removal of
missing values, multimappers and zero readings, 14830 transcripts remained for analysis. Thus, the
initial space dimension was 14830 with a sample size of 145 observations. Using these data, we
performed 3000 Monte - Carlo simulations as described in the Methods section.

We assume that if a gene is strongly associated with the studied disease, it will be included in
most models regardless of the way the sample is split (iteration number). When evaluating algorithm
convergence, we decided to call "most significant genes" those that are included in at least half of the
models.

As shown in Fig. 2 a , the algorithm converges in terms of the number of most significant
genes: after ~2000th iteration, the composition of such genes does not change and converges to six
genes ( MYH6 , CDC42EP4 , RASDI , PRKCD , FCN3 , ZFP36 ). From Fig. 2 b , it is evident that
after 2000 iterations, the increase in new genes (green line) and the weight increase of the most
significant genes (red line) reach a steady state. The rate of weight increase for the most significant
genes exceeds the rate of new gene additions. Therefore, it can be assumed that all genes associated
with the studied disease were selected within 2000 iterations. All genes selected afterwards are

considered noise and are related more to the way the sample is split rather than to the studied disease.

Fig. 2. Results of Monte - Carlo simulations for classifier training. a - Algorithm convergence by the
size of the most significant genes set; red dashes along the x-axis show the moments when this set's
composition changes. b - Dynamics of growth depending on the algorithm iteration of the number of
selected genes (green line); weights of genes included in more than half of the models (red line);
iteration at which the set of most significant genes changed (red vertical dashes along the x-axis). ¢ —
Histogram of ROC-AUC distribution for ML classifiers in 3000 Monte — Carlo simulations. d —
Histogram of the distribution of calculated gene weights included in at least one model.

As a result, at least 425 genes were included in one of the 3000 models in various
combinations. As can be seen from Fig. 2 ¢ , most models have a high ROC-AUC score (greater than
0.9). At the same time, the majority of genes (368 out of 425) are included in less than 5% of models
(Fig. 2 d). Based on the assumption that a disease-associated gene will be included in most models,
we conclude that the usefulness of these 368 genes for classifiers is related more to the way the sample

is split than to the disease. For subsequent analysis, the weights of these genes are set to zero. As a



result, the space of tested hypotheses is reduced to 57 genes, which is 260 times smaller than the
original space (14830 genes).

As can be seen from Fig. 3, not all of the six "most significant genes" selected above turned
out to be statistically significantly associated with the studied disease. The association was not
confirmed for the genes CDC42EP4 , PRKCD , ZFP36. On the other hand, Fig. 3 a shows that along
with the genes MYH6 , FCN3 and RASD1, the gene > FC, which fell short by 0.06 weight units to be
included in the list of "most significant genes". From Fig. 3 SERPINA3 is also statistically significantly
associated and strongly changes its expression by log b it can be seen that not all genes that passed
the multiple comparison correction (FDR gn ) passed the weighted correction (FDR wgn ). These genes

include INTU, HEGI, SYF2, NKD2, ASPSCRI.

Fig. 3. Testing hypotheses about the association of selected genes on an independent dataset
GSE1145. a — Volcano plot comparing gene expression, dot size indicates their Weight mr . b —
Summary statistics table; only significant (by p -value) results are shown. p -val mw — p -value
according to the Mann — Whitney test; FDR su — Benjamini — Hochberg multiple comparison
correction; FDR ygn— weighted Benjamini — Hochberg multiple comparison correction; Weight mr —
gene weight reflecting its significance for classification models based on Monte — Carlo simulations;
log 2 FC — logarithm of the ratio of means.

DISCUSSION OF RESULTS

In this study, we developed and successfully applied an algorithm based on the Monte — Carlo
method for generating robust classifiers and using them to prune the feature space (genes). As a result,
the analyzed space was reduced by ~260 times from 14830 to 57 genes, which, after subsequent
hypothesis testing for associations, were further reduced to 12 genes: MNS1, FCN3, CHRDL2, MYH6,
CAPNI, CD97, S10049, PROSI, CHNI, SERPINA3, AP3M2, RASDI , of which, based on the
combination of characteristics (calculated weight, log » FC, adjusted p -value), the most noteworthy
are MYH6 , FCN3 , RASD1 and SERPINA3 .

Most of the models during training demonstrated high ROC-AUC metric indicators (mode =
0.96, Fig. 2 ¢ ). On the other hand, most genes were included in less than 5% of models (Fig. 2 ).
This result is consistent with the consequences of training models in a high-dimensional space, where
it is easy to select such a set of features in whose space a particular sample will be well separated;

however, this would be an artifact rather than a valuable result [3] .
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The gene MYH6 encodes the alpha isoform of the cardiac myosin heavy chain (a-MHC), which
is expressed throughout the myocardium in early stages of heart development. As the human embryo
develops, the expression of the MYH6 gene in the ventricles decreases and is replaced by the

expression of MYH?7 [14] . Several studies have shown an association of this gene with HCM [15, 16]

The product of the gene FCN3 is a powerful activator of the lectin pathway of complement
[17], associated, according to [18, 19], with heart failure and ischemic cardiomyopathy [20] .

The monomeric protein RASD1 is expressed in cardiac tissue at a low level [21] . Knockdown
of the RASD1 gene in atrial cardiomyocytes leads to a significant increase in the expression of atrial
natriuretic factor [22, 23] , however, no associations of RASD1 with cardiomyopathies have been
identified to date.

SERPINA3, also called a-1-antichymotrypsin (AACT, ACT), is one of the serine protease
inhibitors, particularly cathepsin G [24] . As an acute phase protein secreted into plasma by liver cells,
SERPINA3 plays an important role in the anti-inflammatory response and antiviral response. Elevated
levels of SERPINA3 are observed in heart failure and neurological diseases [25] .

Thus, some of the genes discovered using the proposed algorithm are directly related to the
disease under study, while others are indirectly related, i.e., the obtained results do not contradict
published data. It is also worth noting that the same datasets, GSE36961 and GSE1145, are analyzed
in the work [26] , using "standard" approaches, and they arrive at a similar set of genes: RASDI,
CDC42EP4, MYH6 and FCN3 . Thus, our proposed approach corresponds well with the results of
standard approaches, and its advantage lies in the possibility of complete algorithmization and a
minimal number of arbitrary decisions. In addition, based on the results of our analysis, another
parameter for assessing the "significance" of genes is added — weight. Options for its use are shown

in Fig. 3.

CONCLUSION

In our work, a new algorithm for analyzing transcriptome profiling data is proposed. The
results of the algorithm are in good agreement with published data and open up new possibilities for
analysis through the generation of a weighted feature space (genes), in contrast to the "standard"

situation where all features (genes) are considered as "equal".
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