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Abstract. High-throughput transcriptomic research methods provide the assessment of a vast number 

of factors, valuable for researchers. At the same time the “curse of dimensionality” issues arise, which 

lead to increasing requirements on data processing and analysis methods. In this study, we propose a 

new algorithm that combines Monte Carlo methods and machine learning. This algorithm will enable 

feature space reduction by highlighting genes most likely associated with the investigated diseases. 

Our approach allows not only to generate a set of “interesting” genes but also to assign weight to each 

gene, indicating its “importance”. This measure can be used in subsequent statistical analysis, 

visualization, and interpretation of results. Algorithm performance was demonstrated on open 

transcriptomic data of patients with HCM (GSE36961 and GSE1145). The analysis revealed genes 

MYH6, FCN3, RASD1, and SERPINA3, which is in good agreement with the available literature. 
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INTRODUCTION 

Transcriptomics and high-throughput research methods such as RNA sequencing (RNA-seq) 

or microarrays (MicroArray) today undoubtedly occupy an important place in the arsenal of tools for 

studying the molecular mechanisms of biological systems, the pathogenesis of various diseases and 

the search for their markers.[1]. 

Identification of differentially expressed genes (DEGs) or transcripts under different 

conditions (comparison groups) is one of the important tasks of transcriptome profiling. Differential 

expression data are usually presented in a matrix format, where each row corresponds to a gene (or 

transcript), and each column corresponds to a sample, with the cells indicating the gene expression 

level in the sample.[2]. The main research problem is to detect statistically significant DEGs between 

different groups of samples (e.g. healthy and sick). One of the frequent problems that arise in statistical 

processing of such data is related to the “curse of dimensionality”[3]. 

The “curse of dimensionality” is a phenomenon in which the feature space increases with 

increasing number of dimensions or input variables, which can lead to increased noise and erroneous 

conclusions. The average feature space dimensionality of transcriptome profiling data is over 10,000. 

The average sample size is less than 100 points. Thus, despite the richness of information obtained by 

high-throughput methods, interpretation of these data can be challenging due to the large number of 

genes and small number of samples. 

Standard means of solving the indicated problem include various tools for adjusting valuesp-

value with multiple comparisons, widely used inside popular packages like EdgeR[4]or Limma[5]. 

In this paper, we propose a new approach based on machine learning (ML) methods for 

reducing data dimensionality and identifying key genes with the highest chance of being associated 

with the studied disease, followed by the application of weighted correction procedures for multiple 

comparisons. The weights for adjusting p -values are also obtained using ML methods.  

The essence of the approach is to use Monte Carlo simulations to generate classifiers with high 

generalization ability on transcriptome profiling data. Then, features important for their operation, or 

key genes, are extracted from these classifiers, and a reduced feature space is formed for subsequent 

testing of association hypotheses using standard methods. The resulting feature space will also be a 

weighted space, i.e., with a weight function or measure defined on it. The weight will be defined as 

the proportion of models in which the gene was included, multiplied by the ROC-AUC quality metric, 

averaged across these models. This weight will be used when conducting weighted correction 
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procedures for multiple hypothesis testing, such as weighted Bonferroni, Holm, or Benjamini-

Hochberg methods.  

Initially, the listed weighted correction methods were developed to account for prior 

information [6, 7] . Currently, most of the work devoted to the development of these methods reduces 

to the problem of maximizing the power of statistical tests by the weight vector [8, 9] . In the presented 

work, we propose to return to the classical formulation with the assignment of weight coefficients 

reflecting some prior information, which we obtain from the data ( data driven approach ), namely 

from the effectiveness of classifiers. In other words, as described above, the more well-performing 

classifiers a gene is included in during Monte Carlo simulations, the higher its weight.  

Thus, in the presented study, instead of the common approach (from fundamental observations 

of transcriptome changes in various conditions to creating a classifier for the purposes of applied 

medicine), we propose to go in the opposite direction: from effectively working classifiers to 

understanding pathogenetic processes leading to changes in the transcriptome, which are captured by 

these classifiers.  

To demonstrate the proposed approach, open data of transcriptome profiling of patients with 

hypertrophic cardiomyopathy (HCM) were selected: GSE36961 and GSE1145.  

METHODS 

Fig. 1. Study design.  

  

Briefly, at the first stage, we begin with downloading and preprocessing the GSE36961 dataset 

according to the standard protocol [5] . For training classifiers, we form a data matrix of size 𝑛𝑛 × 𝑚𝑚 , 

where 𝑛𝑛 is the number of observations, 𝑚𝑚 is the number of features/genes; the dependent variable is 

a vector of (0, 1), where 0 means absence of HCM, 1 means presence of HCM. The classification task 

is set to learn to predict "presence of HCM" based on a feature vector (gene expression levels).  

To search for genes involved in the pathogenesis of HCM, we used the Monte - Carlo method 

to simulate L1-regularized classifiers based on logistic regression. L1-regularization allows thinning 

of the feature space, leaving only the most significant features (genes) in the classification model. 

Using this property, we will perform feature selection. Then we trained 3000 models (conducted 3000 

simulations), extracting the training sample according to the sampling with replacement scheme. Only 

observations (rows) were extracted. Genes (features, columns) were not extracted. Each observation 

(row) was extracted with replacement with equal probability and independently. The test sample was 
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formed from observations that did not make it into the training sample. As a result, the training and 

test samples were formed in an approximate ratio of 8:2. Thus, we do not rely on a single model, but 

simulate many different experiments on various samples obtained by extracting the original sample.  

Before launching the algorithm, the regularization coefficient was selected to minimize the 

decrease in model quality according to the ROC-AUC metric. The coefficient selection and quality 

assessment were carried out on a labeled training dataset using cross-validation. Thus, we allow 

overfitting but retain the maximum number of genes, based on the idea that unreliable features will 

be less frequently included in the model, which will directly affect their weight.  

Based on the trained models, we compiled a set of selected genes, which were assigned weights 

according to the following formula:  

  

  

(1)  

  

where: 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒𝑗𝑗∈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑖𝑖   – indicator of the inclusion of the j-th gene in the i-th model, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑖𝑖  – ROC-

AUC metric for the i-model, 𝑛𝑛  – number of iterations.  

  

Thus, the weight is defined as the proportion of models in which the gene was included, 

multiplied by the ROC-AUC quality metric averaged over these models. The ROC-AUC of the model 

is included in the calculation of the gene weight to distinguish genes selected in the same number of 

models but differing in classification quality. Subsequently, we will be interested in genes that are 

most often included in the best classifiers. In this case, the assigned weight will allow us to relevantly 

order the list of genes for their subsequent processing. Genes that are part of less than 5% of models 

and have low weight will be excluded from further consideration.  

Validation of the results was performed on an independent dataset ( GSE1145 ), which was 

not used during training or testing. For association assessment (testing the hypothesis of left or right 

shift), we used the non-parametric Mann-Whitney test [10] , Benjamini - Hochberg - correction for 

multiple comparisons [11] , as well as the weighted Benjamini - Hochberg correction for multiple 

comparisons according to the scheme described in [12] .  

Statistical tests were conducted using the SciPy module version: 1.7.3. For model training, 

testing, and data preprocessing, we used the sklearn module version: 0.24.2 [13] .  

The algorithm code is available at: https://github.com/GJOsmak/MolBiol2024 .  
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RESEARCH RESULTS  

In total, the GSE36961 chip contains 37846 transcripts. After data preprocessing, removal of 

missing values, multimappers and zero readings, 14830 transcripts remained for analysis. Thus, the 

initial space dimension was 14830 with a sample size of 145 observations. Using these data, we 

performed 3000 Monte - Carlo simulations as described in the Methods section.  

We assume that if a gene is strongly associated with the studied disease, it will be included in 

most models regardless of the way the sample is split (iteration number). When evaluating algorithm 

convergence, we decided to call "most significant genes" those that are included in at least half of the 

models.  

As shown in Fig. 2 a , the algorithm converges in terms of the number of most significant 

genes: after ~2000th iteration, the composition of such genes does not change and converges to six 

genes ( MYH6 , CDC42EP4 , RASD1 , PRKCD , FCN3 , ZFP36 ). From Fig. 2 b , it is evident that 

after 2000 iterations, the increase in new genes (green line) and the weight increase of the most 

significant genes (red line) reach a steady state. The rate of weight increase for the most significant 

genes exceeds the rate of new gene additions. Therefore, it can be assumed that all genes associated 

with the studied disease were selected within 2000 iterations. All genes selected afterwards are 

considered noise and are related more to the way the sample is split rather than to the studied disease.  
 

Fig. 2. Results of Monte - Carlo simulations for classifier training. a - Algorithm convergence by the 
size of the most significant genes set; red dashes along the x-axis show the moments when this set's 
composition changes. b - Dynamics of growth depending on the algorithm iteration of the number of 
selected genes (green line); weights of genes included in more than half of the models (red line); 
iteration at which the set of most significant genes changed (red vertical dashes along the x-axis). c ‒ 
Histogram of ROC-AUC distribution for ML classifiers in 3000 Monte – Carlo simulations. d ‒ 
Histogram of the distribution of calculated gene weights included in at least one model.  

  

As a result, at least 425 genes were included in one of the 3000 models in various 

combinations. As can be seen from Fig. 2 c , most models have a high ROC-AUC score (greater than 

0.9). At the same time, the majority of genes (368 out of 425) are included in less than 5% of models 

(Fig. 2 d ). Based on the assumption that a disease-associated gene will be included in most models, 

we conclude that the usefulness of these 368 genes for classifiers is related more to the way the sample 

is split than to the disease. For subsequent analysis, the weights of these genes are set to zero. As a 



result, the space of tested hypotheses is reduced to 57 genes, which is 260 times smaller than the 

original space (14830 genes).  

As can be seen from Fig. 3, not all of the six "most significant genes" selected above turned 

out to be statistically significantly associated with the studied disease. The association was not 

confirmed for the genes CDC42EP4 , PRKCD , ZFP36. On the other hand, Fig. 3 a shows that along 

with the genes MYH6 , FCN3 and RASD1, the gene 2 FC, which fell short by 0.06 weight units to be 

included in the list of "most significant genes". From Fig. 3 SERPINA3 is also statistically significantly 

associated and strongly changes its expression by log b it can be seen that not all genes that passed 

the multiple comparison correction (FDR BH ) passed the weighted correction (FDR wBH ). These genes 

include INTU, HEG1, SYF2, NKD2, ASPSCR1.  

  

Fig. 3. Testing hypotheses about the association of selected genes on an independent dataset 
GSE1145. a ‒ Volcano plot comparing gene expression, dot size indicates their Weight ML . b ‒ 
Summary statistics table; only significant (by p -value) results are shown. p -val MW – p -value 
according to the Mann – Whitney test; FDR BH – Benjamini – Hochberg multiple comparison 
correction; FDR wBH – weighted Benjamini – Hochberg multiple comparison correction; Weight ML – 
gene weight reflecting its significance for classification models based on Monte – Carlo simulations; 
log 2 FC – logarithm of the ratio of means.  

DISCUSSION OF RESULTS  

  

In this study, we developed and successfully applied an algorithm based on the Monte – Carlo 

method for generating robust classifiers and using them to prune the feature space (genes). As a result, 

the analyzed space was reduced by ~260 times from 14830 to 57 genes, which, after subsequent 

hypothesis testing for associations, were further reduced to 12 genes: MNS1, FCN3, CHRDL2, MYH6, 

CAPN1, CD97, S100A9, PROS1, CHN1, SERPINA3, AP3M2, RASD1 , of which, based on the 

combination of characteristics (calculated weight, log 2 FC, adjusted p -value), the most noteworthy 

are MYH6 , FCN3 , RASD1 and SERPINA3 .  

Most of the models during training demonstrated high ROC-AUC metric indicators (mode = 

0.96, Fig. 2 c ). On the other hand, most genes were included in less than 5% of models (Fig. 2 d ). 

This result is consistent with the consequences of training models in a high-dimensional space, where 

it is easy to select such a set of features in whose space a particular sample will be well separated; 

however, this would be an artifact rather than a valuable result [3] .  
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The gene MYH6 encodes the alpha isoform of the cardiac myosin heavy chain (α-MHC), which 

is expressed throughout the myocardium in early stages of heart development. As the human embryo 

develops, the expression of the MYH6 gene in the ventricles decreases and is replaced by the 

expression of MYH7 [14] . Several studies have shown an association of this gene with HCM [15, 16] 

.  

The product of the gene FCN3 is a powerful activator of the lectin pathway of complement 

[17] , associated, according to [18, 19] , with heart failure and ischemic cardiomyopathy [20] .  

The monomeric protein RASD1 is expressed in cardiac tissue at a low level [21] . Knockdown 

of the RASD1 gene in atrial cardiomyocytes leads to a significant increase in the expression of atrial 

natriuretic factor [22, 23] , however, no associations of RASD1 with cardiomyopathies have been 

identified to date.  

SERPINA3, also called α-1-antichymotrypsin (AACT, ACT), is one of the serine protease 

inhibitors, particularly cathepsin G [24] . As an acute phase protein secreted into plasma by liver cells, 

SERPINA3 plays an important role in the anti-inflammatory response and antiviral response. Elevated 

levels of SERPINA3 are observed in heart failure and neurological diseases [25] .  

Thus, some of the genes discovered using the proposed algorithm are directly related to the 

disease under study, while others are indirectly related, i.e., the obtained results do not contradict 

published data. It is also worth noting that the same datasets, GSE36961 and GSE1145, are analyzed 

in the work [26] , using "standard" approaches, and they arrive at a similar set of genes: RASD1, 

CDC42EP4, MYH6 and FCN3 . Thus, our proposed approach corresponds well with the results of 

standard approaches, and its advantage lies in the possibility of complete algorithmization and a 

minimal number of arbitrary decisions. In addition, based on the results of our analysis, another 

parameter for assessing the "significance" of genes is added – weight. Options for its use are shown 

in Fig. 3.  

  

CONCLUSION  

  

In our work, a new algorithm for analyzing transcriptome profiling data is proposed. The 

results of the algorithm are in good agreement with published data and open up new possibilities for 

analysis through the generation of a weighted feature space (genes), in contrast to the "standard" 

situation where all features (genes) are considered as "equal".  
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