Planar molecular arrangements aid the design of MHC class II binding peptides


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide—a peptide with a universal binding affinity—resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.

作者简介

A. Cortés

Department of Molecular Physics, Synthetic Vaccine and New Drug Research Institute

编辑信件的主要联系方式.
Email: adrian.cortes205@gmail.com
哥伦比亚, Popayán

J. Coral

Department of Molecular Physics, Synthetic Vaccine and New Drug Research Institute

Email: adrian.cortes205@gmail.com
哥伦比亚, Popayán

C. McLachlan

Department of Molecular Physics, Synthetic Vaccine and New Drug Research Institute

Email: adrian.cortes205@gmail.com
哥伦比亚, Popayán

R. Benítez

Department of Chemistry, Natural Product Chemistry Research Group

Email: adrian.cortes205@gmail.com
哥伦比亚, Popayán, CP 190002

L. Pinilla

Faculty of Medicine

Email: adrian.cortes205@gmail.com
哥伦比亚, Bogotá

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2017