Exponential estimates of perturbations of rigid-plastic spreading-sink of an annulus
- Autores: Georgievskii D.V.1,2, Tlyustangelov G.S.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
 
- Edição: Volume 52, Nº 4 (2017)
- Páginas: 465-472
- Seção: Article
- URL: https://journals.rcsi.science/0025-6544/article/view/163041
- DOI: https://doi.org/10.3103/S0025654417040148
- ID: 163041
Citar
Resumo
The time evolution of the plane picture of small perturbations imposed on the radial spreading or sink of an annulus made of incompressible ideally rigid-plastic material obeying the Mises–Hencky plasticity criterion is studied. The adhesion conditions are posed on the extending (contracting) boundaries of the annulus in both the ground and perturbed processes. The method of integral relations, which is based on variational inequalities in the corresponding complex Hilbert space, is used to reduce the linearized problem in perturbations to a single relation for quadratic functionals, which permits deriving new exponential upper bounds for the growth or decay of kinematic perturbations. It is shown that the evolution of angular harmonics with distinct numbers is qualitatively distinct.
Palavras-chave
Sobre autores
D. Georgievskii
Lomonosov Moscow State University; Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: georgiev@mech.math.msu.su
				                					                																			                												                	Rússia, 							Moscow, 119992; pr. Vernadskogo 101, str. 1, Moscow, 119526						
G. Tlyustangelov
Lomonosov Moscow State University
														Email: georgiev@mech.math.msu.su
				                					                																			                												                	Rússia, 							Moscow, 119992						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					