Bark Thickness of Forest-forming Species: Modeling and Comparative Analysis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The need to assess the carbon-depositing capacity of a stand, an individual tree and its components is constantly emphasized in the world literature, since mitigation of the effects of climate change has become the highest priority. Since the carbon concentration differs in different tree species and in different components of the tree, including in the stem wood and bark, it is necessary to develop species-specific mathematical models for estimating the proportion of bark in trunks to improve the accuracy of knowledge about the carbon balance of forests. The relationship of bark thickness with both age and diameter of the tree trunk is known, but with respect to its regional variability, the data are contradictory. According to the actual data from 1100 model trees of five forest-forming species, allometric models of a mixed type have been developed. They include as independent variables the age and diameter of the trunk, as well as a binary variable characterising the influence of the growing area itself on the bark thickness of Scots pine, silver birch and Siberian larch, as well as the difference in the thickness of the bark between Siberian spruce and Siberian fir in case of joint growth in mature stands of the taiga zone. At a statistically significant level, it was found that the bark thickness of Scots pine and silver birch trees in the steppe zone is significantly greater compared to the taiga zone, and the bark thickness of Siberian larch trees in the forest-tundra is significantly greater compared to the steppe zone. The bark thickness of Siberian spruce trees is significantly less than that of Siberian fir trees. The ranking of species by bark thickness is included in the paper.

Texto integral

Acesso é fechado

Sobre autores

V. Usoltsev

Botanical Garden, Ural Branch of RAS; Ural State Forest Engineering University

Autor responsável pela correspondência
Email: Usoltsev50@mail.ru
Rússia, 8 Marta Str., 202а, Yekaterinburg, 620144; Sibirskiy Trakt, 37, Yekaterinburg, 620100

I. Tsepordey

Botanical Garden, Ural Branch of RAS

Email: Usoltsev50@mail.ru
Rússia, 8 Marta Str., 202а, Yekaterinburg, 620144

A. Urazova

Ural State Forest Engineering University

Email: Usoltsev50@mail.ru
Rússia, Sibirskiy Trakt, 37, Yekaterinburg, 620100

A. Bornikov

Orenburg State Agrarian University

Email: Usoltsev50@mail.ru
Rússia, Chelyuskintsev str., 18, Orenburg, 460024

N. Plyukha

Ural State Forest Engineering University

Email: Usoltsev50@mail.ru
Rússia, Sibirskiy Trakt, 37, Yekaterinburg, 620100

Bibliografia

  1. Baskerville G.L., Use of logarithmic regression in the estimation of plant biomass, Canadian Journal of Forest Research, 1972, Vol. 2, No. 1, pp. 49–53.
  2. Bonyad A.E., Sima A., Bakhshandeh A., Dadras H., Evaluation of non-destructive Meyer method for determination of bark volume of beech (Fagus orientalis Lipsky) in different geographical aspects, Caspian Journal of Environmental Sciences, 2012, Vol. 10, No.1, pp. 67–73.
  3. Bubyr’ D.S., Klyachkin V.N., Karpunina I.N., Ispol’zovanie binarnykh peremennykh pri regressionnom modelirovanii sostoyaniya tekhnicheskogo ob”ekta (Use of binary variables in regression modeling of the state of a technical object), Izvestiya Samarskogo nauchnogo tsentra RAN, 2014, Vol. 16, No. 6 (2), pp. 371–373.
  4. Butakov G.P., Pleistotsenovyi periglyatsial na vostoke Russkoi ravniny (Pleistocene periglacial in the east of the Russian Plain), Kazan: Izdatel’snvo Kazanskogo universiteta, 1986, 144 p.
  5. Catry F.X., Moreira F., Pausas J.G., Fernandes P.M., Rego F., Cardillo E., Curt T., Cork oak vulnerability to fire: The role of bark harvesting, tree characteristics and abiotic factors, PLoS ONE, 2012, Vol. 7, No 6, Article ID: e39810.
  6. Chauhan S.K., Gupta N., Yadav R.S., Chauhan R., Biomass and carbon allocation in different parts of agroforestry tree species, Indian Forester, 2009, Vol. 135, pp. 981–993.
  7. Danchenko А.М., Bereza (Birch), Alma-Ata: Kainar, 1982, 72 p.
  8. Dickison W.C., Integrative Plant Anatomy, San Diego: Academic Press, 2000, 533 p.
  9. Ditrikh V.I., Lineinye i ob”emnye pokazateli kory listvennitsy sibirskoi (Linear and volumetric indicators of Siberian larch bark), In: Trudy LTA (Scientific works of the Leningrad Forestry Academy), 1970, pp. 95–101.
  10. Domracheva Z.N., Kirillova K.V, Denisov S.A., Rol’ kory sosny obyknovennoi v zashchite ot nizovykh pozharov (The role of the bark of the Scots pine in protection from grass-roots fires), Aktual’nye problemy lesnogo kompleksa, 2019, No. 55, pp. 90–93.
  11. Drēska A., Līpiņš L., Sarmulis Z., Priedes un egles stumbru mizas biezums (The bark thickness of pine and spruce stems), Mežzinātne, 2003, Vol. 45, pp. 131–137 (in Latvian with English resume).
  12. Dyrenkov S.A., Tolshchina kory i ee dolya v ob”eme stvolovoi chasti derev’ev raznovozrastnykh el’nikov Permskoi oblasti (Bark thickness and its share in the volume of the stem part of trees in spruce forests of different ages of the Perm region), Rastitel’nye resursy, 1973, Vol. 9, No. 1, pp. 107–112.
  13. Efremova M.N., Shevelev S.L., Osobennosti formirovaniya kory u stvolov berezy povisloi (Betula pendula Roth.) v lesostepnoi zone Srednei Sibiri (Features of bark formation in the trunks of the silver birch (Betula pendula Roth.) in the forest-steppe zone of Central Siberia), Lesokhozyaistvennaya informatsiya, 2017, No. 2, pp. 26–35.
  14. Evert R.F., Eichhorn S.E., Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, New Jersey: John Wiley & Sons Inc., 2006, 601 p.
  15. Evstaf’ev V.N., Zakonomernosti formirovaniya kory listvennitsy sibirskoi v usloviyakh Priangarskogo raiona: avtoref. kand. s.-kh. nauk (Regularities of formation of Siberian larch bark in the conditions of the Angara region. Extended abstract of agric. sci. thesis), Krasnoyarsk, SibGTU, 2007, 23 p.
  16. Freese F., Linear regression methods for forest research, USDA Forest Service, Research Paper FPL 17, Madison, 1964, 136 p.
  17. Furyaev V.V., Furyaev E.A., Piroekologicheskie svoistva sosny obyknovennoi v Srednei Sibiri (Pyroecological properties of Scots pine in Central Siberia), Khvoinye boreal’noi zony, 2008, Vol. 25, No. 1–2, pp. 103–108.
  18. Gholz H.L., Structure and рroductivity of Juniperus occidentalis in Central Oregon, American Midland Naturalist, 1980, Vol. 103(2), pp. 251–261.
  19. Gribanov L.N., Lagov I.A., Chaban P.S., Lesa Kazakhstana (Forests of Kazakhstan). In: Lesa SSSR (Forests of the USSR), Moscow, Nauka, Vol. 5, 1970, pp. 5–77.
  20. Gryaz’kin A.V., Belyaeva N.V., Danilov D.A., Vandzhurak G.V., Khung Vu Van, Izmenchivost’ tolshchiny i massy kory berezy po dline stvola (Variability of thickness and weight of birch bark along the length of the trunk), Izvestiya vuzov. Lesnoi zhurnal, 2019, No. 2, pp. 32–39.
  21. Gusev I.I., Tolshchina i ob”em kory drevesnykh stvolov eli (Thickness and volume of bark of tree trunks of spruce). In: Lesnaya taksatsiya i lesoustroistvo, Krasnoyarsk,1981, pp. 24–30.
  22. Harmon M.E., Survival of trees after low-intensity surface fires in Great Smoky Mountains National Park, Ecology, 1984, Vol. 65, pp. 796–802.
  23. Il’inskii A.P., Rastitel’nost’ zemnogo shara (Vegetation of the Globe), Moscow, Leningrad: AN SSSR, 1937, 458 p.
  24. Karizumi N., The mechanism and function of tree root in the process of forest production. (I). Methods of investigation and estimation of the root biomass, Bulletin of the Government Forest Experiment Station, 1974, Vol. 259, pp. 1–99.
  25. Keppen F.T., Geograficheskoe rasprostranenie khvoinykh derev’ev v Evropeiskoi Rossii i na Kavkaze (Geographical distribution of coniferous trees in European Russia and the Caucasus). Zapiski Imperatorskoi Akademii nauk, Vol. 50, No. 4 (supplement), St.-Petersburg, 1885, 634 p.
  26. Krasheninnikov I.M., Analiz reliktovoi flory Yuzhnogo Urala v svyazi s istoriei rastitel’nosti i paleogeografiei pleistotsena (Analysis of relict flora of the Southern Urals in relation to the history of vegetation and paleogeography of the Pleistocene), Sovetskaya botanika, 1937, No. 4, pp. 16–45.
  27. Kunze M.F., Untersuchungen über die Genauigkeit der Inhaltsberechnung der Stämme aus Mittenstärke und Länge. Berlin: Verlagsbuchhandlung Paul Parey, 1912, 54 p.
  28. Kurt Y., Calikoglu M., Isik K., Relationships between bark thickness, tree age and tree diameter in Pinus brutia Ten. plantations, Fresenius Environmental Bulletin, 2021, Vol. 30, No. 4, pp. 3122–3129.
  29. Laasasenaho J., Melkas T., Alden S., Modelling bark thickness of Picea Abies with taper curves, Forest Ecology and Management, 2005, Vol. 206, pp. 35–47.
  30. Lawes M.J., Midgley J.J., Clarke P.J., Costs and benefits of relative bark thickness in relation to fire damage: A savanna/forest contrast, Journal of Ecology, 2013, Vol. 101, pp. 517–524.
  31. Leont’ev N.L., Tekhnika statisticheskikh vychislenii (Technique of statistical computation), Moscow: Lesnaya promyshlennost’, 1966, 250 p.
  32. Liepiņš J., Liepiņš K., Evaluation of bark volume of four tree species in Latvia, Research for Rural Development, 2015, Vol. 2, pp. 22–28.
  33. Makarenko A.A., Sortimentnye i tovarnye tablitsy dlya lesov Kazakhstana (Wood assortment and commodity tables for forests of Kazakhstan), Alma-Ata: Kainar, 1987, Part 2, 227 p.
  34. Makhnev A.K., Formy berezy v lesakh Pripyshminskogo Zaural’ya i ikh taksatsionno-morfologicheskaya kharakteristika (Birch forms in the forests of the Pripyshminsky Trans-Urals and their taxation and morphological characteristics), Trudy Instituta biologii. Ural’skii filial AN SSSR, 1965, Vol. 47, pp. 55–61.
  35. Malenvo E., Statisticheskie metody ekonometrii (Statistical methods of econometrics), Issue 1, Moscow: Statistics, 1975, 422 p. (translated from French).
  36. Marshall H.D., Murphy G.E., Lachenbruch B., Effects of bark thickness estimates on optimal log merchandising, Forest Products Journal, 2006, Vol. 56, pp. 87–92.
  37. Mascaro J., Litton C.M., Hughes R.F., Uowolo A., Schnitzer S.A., Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes, Biological Journal of the Linnean Society, 2014, Vol. 111, pp. 230–233.
  38. Mirabdollahi S.M., Bonyad A.E., Torkaman J., Bakhshandeh N.B., Modeling of effective variables on bark thickness of Fagus orientalis Lipsky in the Asalem forest area, Journal of Wood & Forest Science and Technology, 2011, Vol. 18, No. 3, pp. 79–90 (in Persian with English resume).
  39. Murphy G., Cown D., Within-tree, between-tree, and geospatial variation in estimated Pinus radiata bark volume and weight in New Zealand, New Zealand Journal of Forest Science, 2015, Vol. 45, Article ID: 18.
  40. Nakhabtsev I.A., Taksatsiya drevesnoi kory (Taxation of tree bark), Leningrad: LLTA, 1990, 36 p.
  41. Pausas J.G., Bark thickness and fire regime, Functional Ecology, 2015, Vol. 29, pp. 315–327.
  42. Pchelintsev V.I., Taksatsiya kory listvennitsy (Taxation of larch bark). In: Listvennitsa: problemy kompleksnoi pererabotki (Larch: problems of complex processing), Krasnoyarsk: SibTI, 1987, pp. 9–14.
  43. Perelygin A.M., Ugolev B.N., Drevesinovedenie (Wood science), Moscow: Lesnaya promyshlennost’, 1971, 318 p.
  44. Philip M.S., Measuring trees and forest. CAB International, Walling Ford, UK, 1994, 310 p.
  45. Pogiba S.P., Kazantseva E.V., Gibridologicheskii analiz sibsov berezy povisloi po kore (Hybridological analysis of silver birch sibs by bark), Lesnoi vestnik, 2014, No. 4, pp. 6–12.
  46. Pravdin L.F., Sosna obyknovennaya (Common pine), Moscow: Nauka, 1964, 192 p.
  47. Pugachev P.G., Nekotorye ekologo-morfologicheskie osobennosti listvennitsy Sukacheva v stepnom Zaural’e (Some ecological and morphological features of Sukachev larch in the Trans-Ural steppe), Ekologiya, 1973, No. 3, pp. 31–35.
  48. Richardson S.J., Laughlin D.C., Lawes M.J., Holdaway R.J., Wilmshurst J.M., Wright M., Curran T.J., Bellingham P.J., McGlone M.S., Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities, American Journal of Botany, 2015, Vol. 102, pp. 1590–1598.
  49. Roi Yu.F., Levkovskaya M.V., Tipy treshchinovatosti i zashchitnye svoistva korki sosny obyknovennoi (Pinus sylvestris L.) v usloviyakh yugo-zapada Belarusi (Types of fracturing and protective properties of the bark of Scots pine (Pinus sylvestris L.) in the conditions of the south-west of Belarus’), Vesnik Mazyrskaga DPU imya Shamyakina, 2011, No. 3, pp. 55–60.
  50. Rosell J.A., Bark thickness across the angiosperms: More than just fire, New Phytologist, 2016, Vol. 211, pp. 90–102.
  51. Shevelev S.L., Formirovanie kory u derev’ev listvennitsy sibirskoi (Bark formation in Siberian larch trees), Sibirskii lesnoi zhurnal, 2016, No. 4, pp. 134–138.
  52. Shevelev S.L., Kucherenko A.N., Nekotorye zakonomernye svyazi razmernykh kharakteristik kory listvennitsy sibirskoi v Khakasii (Some natural relations of the dimensional characteristics of the bark of Siberian larch in Khakassia). In: Listvennitsa: problemy kompleksnoi pererabotki (Larch: problems of complex processing), Krasnoyarsk: SibTI, 1989, pp. 12–17.
  53. Shevelev S.L., Smol’yanov A.S., Krasikov I.I., Batvenkina T.V., Zakonomernosti formirovaniya kory u stvolov sosny kedrovoi sibirskoi (Regularities of bark formation in stems of Siberian cedar pine), Khvoinye boreal’noi zony, 2015, Vol. 33, No. 3–4, pp. 135–138.
  54. Shevelev S.L., Smol’yanov A.S., Krasikov I.I., Bratilova N.P., Formirovanie kory u stvolov pikhty sibirskoi (Abies sibirica Ledeb.) v tsentral’noi chasti Srednei Sibiri (Formation of stem bark of Siberian fir (Abies sibirica Ledeb.) in the central part of Central Siberia), Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2017, Vol. 149, No. 3, pp. 72–78.
  55. Shevelev S.L., Taksatsiya lesa. Taksatsiya kory lesoobrazuyushchikh porod Sibiri (Forest taxation. Taxation of the bark of forest-forming species of Siberia), Krasnoyarsk: SibGU im. M.F. Reshetneva, 2023, 44 p.
  56. Sofronov M.A., Volokitina A.V., Ob ekologicheskikh osobennostyakh zony severnykh redkolesii v Srednei Sibiri (On the ecological features of the zone of northern woodlands in Central Siberia), Sibirskii ekologicheskii zhurn., 1998, No. 3–4, pp. 245–250.
  57. Sonmez T., Keles S., Tilki F., Effect of aspect, tree age and tree diameter on bark thickness of Picea orientalis, Scandinavian Journal of Forest Research, 2007, Vol. 22, pp. 193–197.
  58. Stangle S.M., Sauter U.H., Dormann C.F., Comparison of models for estimating bark thickness of Picea abies in Southwest Germany: The role of tree, stand, and environmental factors, Annals of Forest Science, 2017, Vol. 74, Article 16.
  59. Tyulina L.N., K evolyutsii rastitel’nogo pokrova predgorii Yuzhnogo Urala (On the evolution of the vegetation cover of the foothills of the Southern Urals), Zapiski Zlatoustovskogo obshchestva kraevedeniya, 1929, No. 1, pp. 1–18.
  60. Usoltsev V.A., Modelirovanie struktury i dinamiki fitomassy drevostoev (Modeling of the structure and dynamics of phytomass of stands). Krasnoyarsk: Izd-vo Krasnoyarskogo un-ta, 1985, 191 p., available at:
  61. http://elar.usfeu.ru/handle/123456789/3353
  62. Usoltsev V.A., Stem taper, density and dry matter content in biomass of trees growing in Central Eurasia, Yekaterinburg: Ural State Forest Engineering University, Botanical Garden of Ural Branch of RAS, 2020, available at: https://elar.usfeu.ru/handle/123456789/9649
  63. Vais A.A., Tolshchina kory nizhnei chasti derev’ev eli sibirskoi (Picea sibirica) v usloviyakh Srednei Sibiri (The thickness of the bark of the lower part of Siberian spruce trees (Picea sibirica) in the conditions of Central Siberia), Uchenye zapiski Petrozavodskogo gosudarstvennogo un-ta. Seriya Estestvennye i tekhnicheskie nauki, 2010, No. 8 (113), pp. 60–63, available at: https://elibrary.karelia.ru/book.shtml?id=23121#t20c
  64. Vais A.A., Tolshchina kory nizhnei chasti derev’ev sosny obyknovennoi (Pinus sylvestris L.) v usloviyakh Srednei Sibiri (The thickness of the bark of the lower part of the trees of the Scots pine (Pinus sylvestris L.) in the conditions of Central Siberia), Vestnik KrasGAU, 2009, No. 7, pp. 44–47.
  65. Valipour A., Namiranian M., Etemad V., Ghazanfari H., Relationships between diameter, height and geographical aspects with bark thickness of Lebanon oak tree (Quercus libani Olive.) in Armardeh, Baneh (Northern Zagros of Iran), Research Journal of Forestry, 2009, Vol. 3, No. 1, pp. 1–7.
  66. Vasil’ev A.S., Kruglye lesomaterialy kak predmet truda pri gruppovoi okorke (Round timber as an object of labor in group debarking), Inzhenernyi vestnik Dona, Issue 5, Rostov-On-Don, 2012, available at:
  67. http://www.ivdon.ru/magazine/archive/n4p2y2012/1398 (April 10, 2023).
  68. Verzunov A.I., Vliyanie pochvenno-gruntovykh uslovii na formirovanie kornevykh sistem sosny i listvennitsy v stepnykh borakh Kazakhstana (Influence of soil and ground conditions on the formation of root systems of pine and larch in the steppe forests of Kazakhstan), Ekologiya, 1986, No. 5, pp. 69–71.
  69. Vines R.G., Heat transfer through bark and the resistance of trees to fire, Australian Journal of Botany, 1968, Vol. 16, pp. 499–514.
  70. Voropanov P.V., Opredelenie ob”ema stvola bez kory u rastushchego dereva (Determining the volume of a trunk without bark in a growing tree), Izvestiya vuzov. Lesnoi zhurnal, 1982, No. 5, pp. 20–23.
  71. Warren W.G., Record of preplanned and spontaneous discussions concerning the paper by Furnival G.M. and Wilson R.W. “Systems of equations for predicting forest growth and yield”, Statistical Ecology, 1971, Vol. 3, pp. 56–57.
  72. Williams V.L., Witkowski E.T.F, Balkwill K., Relationship between bark thickness and diameter at breast height for six tree species used medicinally in South Africa, South African Journal of Botany, 2007, Vol. 73, pp. 449–465.
  73. Williams V.L., Witkowski E.T.F., Balkwill K., Height, branch-free bole length and bark thickness for six tree species used medicinally in South Africa, Koedoe, 2005, Vol. 48, pp. 57–65.
  74. Yilmaz E., Ozdemir E., Makineci E., Bark thickness models for oak forests being converted from coppice to high forests in Northwestern Turkey, Environmental Monitoring and Assessment, 2021, Vol. 193, Article 728.
  75. Zakharov V.K., Tablitsy ob”ema i sbega malomernykh stvolov sosny i metodika ikh sostavleniya (Tables of volume and taper of small-sized pine trunks and methods of their designing). In: Sbornik nauchnykh trudov, Belorusskii lesotekhnicheskii institut imeni S.M. Kirova, Minsk: Izd-vo BGU, 1956, No. 8. pp. 40–55.
  76. Zeng W.S., Developing tree biomass models for eight major tree species in China. In: Biomass volume estimation and valorization for energy. Chapter 1. Intech Publ., 2017, pp. 3–21.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1.

Baixar (202KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies