Dead Wood Elements Composition in Different Tree Species and Stages of Decay in the Broad-Leaved Forests of the Kaluzhskie Zaseki Reserve

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The content and mass concentration of eight chemical elements Al, Ca, Cu, K, Mg, Mn, P, and Zn were analysed in dead wood of eight tree species at five stages of decomposition. Wood samples were taken at the site of the mass windfall of 2006 in a multispecies broadleaved forest in the Kaluzhskie Zaseki nature reserve. Deadwood of seven deciduous trees species was studied: maple (Acer platanoides), birch (Betula pendula), common ash (Fraxinus excelsior), common aspen (Populus tremula), English oak (Quercus robur), linden (Tilia cordata), rough elm (Ulmus glabra), as well as one coniferous tree species – Norway spruce (Picea abies). A series of one-way analyses of variance was carried out to assess the influence of the species and the stage of deadwood decomposition (including the zero stage for control samples) on the density, content of elements and their mass concentration. Tree species most clearly differed in the content and mass concentration of Mn, Zn, Mg, Ca, and K: R2 varied from 50 to 23% for the content and from 53 to 19% for the mass concentration of elements of the indicated series. The leaders in the content of these elements were the following species: Mn – maple, birch, spruce, linden; Zn – birch and aspen; Mg – maple, elm; Ca – elm; K – linden, elm. The stages of wood decomposition turned out to be a significant factor of variation for the content of Mn, P, Cu, Zn and Ca: R2 varied from 22 to 16%. During the destruction of wood trunks, a significant increase in the content of these elements occurred. Maintenance of cycles of biophilic elements is more successfully implemented in the presence of deadwood of different species at different stages of decomposition.

Авторлар туралы

L. Khanina

Institute of Mathematical Problems of Biology of RAS, branch of the Keldysh Institute of Applied Mathematics of RAS

Хат алмасуға жауапты Автор.
Email: khanina.larisa@gmail.com
Russia, 142290, Pushchino, Professora Vitkevicha st., 1

V. Smirnov

Institute of Mathematical Problems of Biology of RAS, branch of the Keldysh Institute of Applied Mathematics of RAS; Center for Forest Ecology and Productivity of the RAS

Email: khanina.larisa@gmail.com
Russia, 142290, Pushchino, Professora Vitkevicha st., 1; Russia, 117997, Moscow, Profsoyuznaya st., 84/32 bldg. 14

M. Bobrovskiy

Institute of Physicoсhemical and Biological Problems in Soil Science, Pushchino Scientific Center for Biological Research
of the Russian Academy of Sciences

Email: khanina.larisa@gmail.com
Russia, 142290, Moscow Oblast, Pushchino, Institutskaya st., 2

Әдебиет тізімі

  1. Бенькова В.Е., Швейнгрубер Ф.Х. Анатомия древесины растений России. Берн: Хаупт, 2004. 465 с.
  2. Бобровский М.В., Стаменов М.Н. Катастрофический ветровал 2006 года на территории заповедника “Калужские засеки” // Лесоведение. 2020. № 6. С. 523–536.
  3. Булыгина О.Н., Разуваев В.Н., Трофименко Л.Т., Швец Н.В. Описание массива данных среднемесячной температуры воздуха на станциях России. Свидетельство о государственной регистрации базы данных № 2014621485. URL: http://meteo.ru/data/156-temperature#описание-массива-данных (дата обращения 29.09.2022).
  4. Ильин Б.М., Булыгина О.Н., Богданова Э.Г., Веселов В.М., Гаврилова С.Ю. Описание массива месячных сумм осадков, с устранением систематических погрешностей осадкомерных приборов. URL: http://meteo.ru/ data/506-mesyachnye-summy-osadkov-s-ustraneniem-sistematicheskikh-pogreshnostej-osadkomernykh-priborov (дата обращения 25.10.2022).
  5. Лукина Н.В. Глобальные вызовы и лесные экосистемы // Вестник РАН. 2020. Т. 90. №. 6. С. 528–532.
  6. Растительность Европейской части СССР. Л.: Наука, 1980. 431 с.
  7. Справочник по климату СССР. Вып. 8. Часть IV. Влажность воздуха, атмосферные осадки и снежный покров. Л.: Гидрометеоиздат, 1967.
  8. Ханина Л.Г., Волобуев С.В., Смирнов В.Э., Тутукина М.Н., Шелякин П.В., Бобровский М.В. Разнообразие сообществ грибов и бактерий и динамика физико-химических свойств древесины широколиственных видов деревьев и ели европейской в ходе деструкции после массового ветровала // Доклады Международной конференции “Математическая биология и биоинформатика”. Т. 9. Пущино: ИМПБ РАН, 2022. Статья № e. https://doi.org/10.17537/icmbb22.48
  9. Arnstadt T., Hoppe B., Kahl T., Kellner H., Krüger D., Bauhus J., Hofrichter M. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris // Forest Ecology and Management. 2016. V. 382. P. 129–142.
  10. Blanchette R.A. Manganese accumulation in wood decayed by white rot fungi // Phytopathology. 1984. V. 74. P. 725–730.
  11. Bütler R., Patty L., Le Bayon R.-C., Guenat C., Schlaepfer R. Log decay of Picea abies in the Swiss Jura Mountains of central Europe // Forest Ecology and Management. 2007. V. 242. № 2–3. P. 791–799.
  12. Cornelissen J.H.C., Sass-Klaassen U., Poorter L., van Geffen K., van Logtestijn R.S.P., van Hal J. et al. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment // Ambio. 2012. V. 41. P. 231–245.
  13. Dhiedt E., De Keersmaeker L., Vandekerkhove K., Verheyen K. Effects of decomposing beech (Fagus sylvatica) logs on the chemistry of acidified sand and loam soils in two forest reserves in Flanders (northern Belgium) // Forest Ecology and Management. 2019. V. 445. P. 70–81.
  14. Fischer M., Bossdorf O., Gockel S., Hansel F., Hemp A., Hessenmoller D., Korte G., Nieschulze J., Pfeiffer S., Prati D., Renner S., Schoning I., Schumacher U., Wells K., Buscot F., Kalko E.K.V., Linsenmair K.E., Schulze E.D., Weisser W.W. Iplementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories // Basic Appl. Ecol. 2010. V. 11. P. 473–485.
  15. Gorgolewski A., Rudz P., Jones T., Basiliko N., Caspersen J. Assessing coarse woody debris nutrient dynamics in managed northern hardwood forests using a matrix transition model // Ecosystems. 2020. V. 23. P. 541–554.
  16. Harmon M.E., Fasth B.G., Yatskov M., Kastendick D., Rock J., Woodall C.W. Release of coarse woody detritus-related carbon: A synthesis across forest biomes // Carbon Balance Management. 2020. V. 15. P. 1–21.
  17. Herrmann S., Bauhus J. Nutrient retention and release in coarse woody debris of three important central European tree species and the use of NIRS to determine deadwood chemical properties // Forest Ecosystems. 2018. V. 5. № 1. 22 p. https://doi.org/10.1186/s40663-018-0140-4
  18. Hofrichter M. Review: lignin conversion by manganese peroxidase (MnP) // Enzyme and Microbial Technology. 2002. V. 30. P. 454–466.
  19. Holub S.M., Spears J.D., Lajtha K. A reanalysis of nutrient dynamics in coniferous coarse woody debris // Canadian Journal of Forest Research. 2001. V. 31. № 11. P. 1894–1902.
  20. Husson F., Le S., Pages J. Exploratory Multivariate Analysis by Example Using R. London: Chapman & Hall/CRC Press, 2017. 248 p.
  21. Kahl T., Arnstadt T., Baber K., Bässler C., Bauhus J., Borken W. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities // Forest Ecology and Management. 2017. V. 391. P. 86–95.
  22. Khanina L.G., Bobrovsky M.V. Value of large Quercus robur fallen logs in enhancing the species diversity of vascular plants in an old-growth mesic broad-leaved forest in the Central Russian Upland // Forest Ecology and Management. 2021. V. 491. Article No. 119172.
  23. Khanina L.G., Bobrovsky M.V., Zhmaylov I.V. Vegetation diversity on the microsites caused by tree uprooting during a catastrophic windthrow in temperate broadleaved forests // Russian J. Ecosystem Ecology. 2019. V. 4. № 3. 1. https://doi.org/10.21685/2500-0578-2019-3-1
  24. Krankina O.N., Harmon M.E., Griazkin A.V. Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level // Canadian J. Forest Research. 1999. V. 29. P. 20–32.
  25. Kuehne C., Donath C., Müller-Using S.I., Bartsch N. Nutrient fluxes via leaching from coarse woody debris in a Fagus sylvatica forest in the Solling Mountains, Germany // Canadian J. Forest Research. 2008. V. 38. P. 2405–2413.
  26. Lindahl B.D., Tunlid A. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs // New Phytol. 2015. V. 205. № 4. P. 1443–1447.
  27. Löf M., Brunet J., Hickler T., Birkedal M., Jensen A. Restoring broadleaved forests in southern Sweden as climate changes // A goal-oriented approach to forest landscape restoration. World Forests. 2012. V. 16. P. 373–391.
  28. Lukina N.V., Orlova M.A., Steinnes E., Artemkina N.A., Gorbacheva T.T., Smirnov V.E., Belova E.A. Mass-loss rates from decomposition of plant residues in spruce forests near the northern tree line subject to strong air pollution // Environmental Science and Pollution Research. 2017. https://doi.org/10.1007/s11356-017-9348-z
  29. Millennium Ecosystem Assessment.Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press, 2005.
  30. Min K., Kim Y.H., Kim J., Kim Y., Gong G., Um Y. Effect of manganese peroxidase on the decomposition of cellulosic components: Direct cellulolytic activity and synergistic effect with cellulase // Bioresource Technology. 2022. V. 343. 126138.
  31. Müller J., Ulyshen M., Seibold S., Cadotte M., Chao A., Bässler C.et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent // Oikos. 2020. V. 129. P. 1579–1588.
  32. Palviainen M., Finer L., Laiho R., Shorohova E., Kapitsa E., Vanha-Majamaa I. Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps // Forest Ecology and Management. 2010. V. 259. № 3. P. 390–398.
  33. Purahong W., Wubet T., Krüger D., Buscot F. Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests // The ISME J. 2018a. V. 12. № 1. P. 289–295.
  34. Purahong W., Wubet T., Lentendu G., Hoppe B., Jariyavidyanont K., Arnstadt T., Baber K. et al. Determinants of deadwood-inhabiting fungal communities in temperate forests: molecular evidence from a large scale deadwood decomposition experiment // Frontiers in Microbiology. 2018b. V. 9. https://doi.org/10.3389/fmicb.2018.02120
  35. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, 2022. URL: http://www.R-project.org/ (accessed 29.09.2022)
  36. Renvall P. Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland // Karstenia. 1995. V. 35. № 1. P. 1–51.
  37. Rieker D., Krah F.-S., Gossner M.M., Uhl B., Ambarli D., Baber K., Buscot F., Hofrichter M., Hoppe B., Kahl T., Kellner H., Moll J., Purahong W., Seibold S., Weisser W.W., Bässler C. Disentangling the importance of space and host tree for the beta-diversity of beetles, fungi, and bacteria: Lessons from a large dead-wood experiment // Biological Conservation. 2022. P. 109521. https://doi.org/10.1016/j.biocon.2022.109521
  38. Rothpfeffer C., Karltun E. Inorganic elements in tree compartments of Picea abies–Concentrations versus stem diameter in wood and bark and concentrations in needles and branches // Biomass and Bioenergy. 2007. V. 31. № 10. P. 717–725.
  39. Shikhov A.N., Chernokulsky A.V., Azhigov I.O., Semakina A.V. A satellite-derived database for stand-replacing windthrow events in boreal forests of European Russia in 1986–2017 // Earth System Science Data. 2020. V. 12. P. 3489–3513.
  40. Shorohova E., Kapitsa E. Mineralization and fragmentation rates of bark attached to logs in a northern boreal forest // Forest Ecology and Management. 2014. V. 315. № 1. P. 185–190.
  41. Shorohova E.V., Shorohov A.A. Coarse woody debris dynamics and stores in a boreal virgin spruce forest // Ecol.Bull. 2001. V. 49. P. 129–135.
  42. Sun T., Yu C., Berg B., Wei Z., Wang L., Liu X., Feng C., Wu Z., Bai W., Zhang L. Empirical evidence that manganese enrichment accelerates decomposition // Applied Soil Ecology. V. 168. 2021. P. 104148. https://doi.org/10.1016/j.apsoil.2021.104148
  43. Thom D., Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests // Biol. Rev. 2016. V. 91. № 3. P. 760–781.
  44. Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Monteiro L.M.O., Saraiva J.P., Human Z.R., Cajthaml T., da Rocha U.N., Baldrian P. Complementary roles of wood-Inhabiting fungi and bacteria facilitate deadwood decomposition // mSystems. 2021. V. 6. № 1. e01078-20.
  45. Yang S., Sterck F.J., Sass-Klaassen U., Cornelissen J.H.C., van Logtestijn R.S.P., Hefting M., Goudzwaard L., Zuo J., Poorter L. Stem trait spectra underpin multiple functions of temperate tree species // Frontiers in Plant Science. 2022. V. 13. 769551. https://doi.org/10.3389/fpls.2022.769551
  46. Yatskov M., Harmon M.E., Krankina O.N. A chronosequence of wood decomposition in the boreal forests of Russia // Canadian Journal of Forest Research. 2003. V. 33. № 7. P. 1211–1226.
  47. Yuan J., Hou L., Wei X., Shang Z., Cheng F., Zhang S. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China // PLoS One. 2017. V. 12. № 4. e0175203. https://doi.org/10.1371/journal.pone.0175203

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (463KB)
3.

Жүктеу (957KB)

© Л.Г. Ханина, В.Э. Смирнов, М.В. Бобровский, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>