Spatio-Temporal Connectivity of the Long-Term Dynamics of the Forest Phyllophagus Insects’ Abundance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study was conducted regarding the conjugation of the population dynamics of different forest insects species under different landscape conditions on the territory of the Krasnoturansky pine forest (South of the Krasnoyarsk Territory). The population dynamics conjugation indicates the presence of an ecological mechanism that leads to the coordination of the temporal series of different species’ population dynamics in one habitat or one species in different habitats. This means that using the conjugation indicators of insect dynamics one can indirectly assess the influence of various factors affecting these populations. To assess the spatio-temporal synchronization of the population dynamics of insects in different landscape conditions, the data of the phyllophagous insects counts for the period from 1979 to 2016 were used. According to the phases of dynamics, although the periods of cyclic fluctuations of phyllophages’ populations in different stows are close, the characteristics of the phyllophagous insects number dynamics still differ in both the absolute values and the phases of dynamics, even when the distance between the test sites is relatively small. The “memory” of the system, expressed in the order of the autoregressive model of the population dynamics, is fairly large for the studied complexes of phyllophagous species: the current value of the phyllophagous populations density can be influenced by the population density values from as far as four years before the counts. Such values of “memory” lead to an increase in the populations’ stability margin, and a decrease in the risks of developing insect outbreaks. The determination coefficients close to 1 for the phyllophages dynamics models in the stows of the Krasnoturansky pine forest indicate a weak influence of modifying factors (such as weather) on the population dynamics.

About the authors

O. V. Tarasova

Siberian Federal University

Author for correspondence.
Email: olvitarasova2010@yandex.ru
Russia, 660041, Krasnoyarsk, av. Svobodny, 76

P. A. Krasnoperova

Siberian Federal University

Email: olvitarasova2010@yandex.ru
Russia, 660041, Krasnoyarsk, av. Svobodny, 76

References

  1. Андерсон Т. Статистический анализ временных рядов. М.: Мир, 1976. 755 с.
  2. Бокс Дж., Дженкинс Г. Анализ временных рядов. Прогноз и управление. М.: Мир, 1974. Вып.1. 406 с.
  3. Гайдук А.Р., Беляев В.Е., Пьявченко Т.А. Теория автоматического управления в примерах и задачах. СПб.: Лань, 2011. 464 с.
  4. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. М.: Мир, 1971. Вып. 1. 316 с.; Вып. 2. 287 с.
  5. Дорф Р.К., Бишоп P.X. Современные системы управления. М.: Лаборатория базовых знаний, 2004. 832 с.
  6. Исаев А.С., Хлебопрос Р.Г., Кондаков Ю.П., Недорезов Л.В., Киселев В.В., Суховольский В.Г. Популяционная динамика лесных насекомых М.: Наука, 2001. 374 с.
  7. Исаев А.С., Пальникова Е.Н., Суховольский В.Г., Тарасова О.В. Динамика численности лесных насекомых-филлофагов: модели и прогнозы. М.: Товарищество научных изданий КМК, 2015. 276 с.
  8. Кендалл М.Дж., Стьюарт А. Многомерный статистический анализ и временные ряды. М.: Наука, 1976. 736 с.
  9. Ким Д.П. Теория автоматического управления. М.: Физматлит, 2007. Т. 1. 312 с.
  10. Киреев Д.М. Методы изучения лесов по аэроснимкам. Новосибирск: Наука. Сибирское отделение, 1977. 213 с.
  11. Кондаков Ю.П. Закономерности массовых размножений сибирского шелкопряда // Экология популяций лесных животных Сибири. Новосибирск: Наука, 1974. С. 206–265.
  12. Кондаков Ю.П. Массовые размножения сибирского шелкопряда в лесах Красноярского края // Энтомологические исследования в Сибири. Вып. 2. Красноярск: КФ РЭО, 2002. С. 25–74.
  13. Кондаков Ю.П., Сорокопуд Е.Н. Сосновая пяденица в ленточных борах Минусинской котловины // Насекомые лесостепных боров Сибири. Новосибирск: Наука, 1982. С. 34–56.
  14. Максимов А.А. Природные циклы: Причины повторяемости экологических процессов. Л.: Наука, 1989. 236 с.
  15. Марпл С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990. 584 с.
  16. Пальникова Е.Н. Ландшафтно-экологические особенности очагов массового размножения сосновой пяденицы в борах юга Сибири // Экологическая оценка местообитаний лесных животных. Новосибирск: Наука, 1987. С. 96–106.
  17. Пальникова Е.Н. Факторы динамики численности сосновой пяденицы // Лесоведение. 1998. № 4. С. 3–10.
  18. Пальникова Е.Н., Свидерская И.В., Суховольский В.Г. Сосновая пяденица в лесах Сибири. Новосибирск: Наука, 2002. 252 с.
  19. Пальникова Е.Н., Суховольский В.Г. Взаимодействие “фитофаг – энтомофаг” на разных фазах массового размножения лесных насекомых // Лесоведение. 2016. № 1. С. 15–24.
  20. Поллард Дж. Справочник по вычислительным методами статистики. М.: Финансы и статистика, 1982. 344 с.
  21. Тарасова О.В. Ландшафтно-экологическая специфика вредной лесной энтомофауны Минусинских ленточных боров // Насекомые лесостепных боров Сибири. Новосибирск: Наука, 1982. С. 18–34.
  22. Хемминг Р.В. Цифровые фильтры. М.: Недра, 1987. 221 с.
  23. Чижевский А.Л. Земное эхо солнечных бурь. М.: Мысль, 1973. 349 с.
  24. Эпова В.И. Конспект фауны хвоегрызущих насекомых Байкальской Сибири. Новосибирск: Наука, 1999. 96 с.
  25. Яновский В.М. Лесопатологическое районирование южной части Приенисейской Сибири. Красноярск: Институт леса им. В.Н.Сукачева СО РАН, 2003. 69 с.
  26. Baars M.A., Van Dijk T.S. Population dynamics of two carabid beetles at a Dutch heatland // J. Animal Ecology. 1984. V. 53. P. 375–388.
  27. Bascompte J., Sole R.V. Spatiotemporal patterns in nature // Trends in Ecology and Evolution. 1998. V. 13. P. 173-174.
  28. Bjornstad O.N. Cycles and synchrony: two historical “experiments” and one experience // J. Animal Ecology. 2000. V. 69. P. 869–873.
  29. Bjornstad O.N., Bascompte J. Synchrony and second order spatial correlation in host–parasitoid system // J. Animal Ecology. 2001. V. 70. P. 924–933.
  30. Bjørnstad O.N., Ims R.A., Lambin X. Spatial population dynamics: analyzing patterns and processes of population synchrony // Trends in Ecology and Evolution. 1999. V. 14. № 11. P. 427–431.
  31. Bone C., Wulder M.A., White J.C., Robertson C., Nelson T.A. A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran’s I statistic // Applied Geography. 2013. V. 40. P. 161–170.
  32. Buonaccorsi J.P., Elkington J.S., Evans S.R., Liebhold A. Measuring and testing for spatial synchrony // Ecology. 2001. V. 82. P. 1668–1679.
  33. Choi W.I., Ryoo M.I., Chung Y.-J., Park Y.-S. Geographical variation in the population dynamics of Thecodiplosis japonensis: causes and effects on spatial synchrony // Population Ecology. 2011. V. 53. № 3. P. 429–439.
  34. Curran L.M., Webb C.O. Experimental test of the spatiotemporal scale of seeds predation in mast-fruiting Dipterocarpaceae // Ecological Monographs. 2000. V. 70. № 1. P. 129–148.
  35. Foster J.R., Townsend P.A., Mladenoff D.J. Spatial dynamics of a gypsy moth defoliation outbreak and dependence on habitat characteristics // Landscape Ecology. 2013. V. 28. № 7. P. 1307–1320.
  36. Hanski I., Woiwood I.P. Spatial synchrony in the dynamics of moth and aphid populations // J. Animal Ecology. 1993. V. 62. P. 656–668.
  37. Haydon D., Steen H. The effect of large- and small-scale random events on the synchrony of metapopulation dynamics: a theoretical analysis // Proceedings of the Royal Society of London Series B-Biological Sciences. 1997. V. 264. P. 1375–1381.
  38. Haynes K.J., Liebhold A.M., Johnson D.M. Elevational gradient in the cyclicity of a forest-defoliating insect // Population Ecology. 2012. V. 54. № 2. P. 239–250.
  39. Henttonen H., McGuire D., Hansson L. Comparisons of amplitude and frequencies (spectral analyses) of density variations in long-term data sets of Clethrionomys species // Annales Zoologici Fennici. 1985. V. 22. P. 221–229.
  40. Herrero A., Zamora R., Castro J., Hodar J.A. Limits of pine forest distribution at the treeline: herbivory matters // Plant Ecology. 2012. V. 213. № 3. P. 459–469.
  41. Isaev A.S, Soukhovolsky V.G., Tarasova O.V., Palnikova E.N., Kovalev A.V. Forest Insect Population Dynamics, Outbreaks, and Global Warming Effects. N.Y.: Wiley, 2017. 298 p.
  42. Kapeller S., Schroeder H., Schueler S. Modelling the spatial population dynamics of the green oak leaf roller (Tortrix viridana) using density dependent competitive interactions: Effects of herbivore mortality and varying host-plant quality // Ecological Modelling. 2011. V. 222. № 7. P. 1293–1302.
  43. Liebhold A., Kamata N. Are population cycles and spatial synchrony universal characteristics of forest insect population? // Population Ecology. 2000. V. 42. P. 205–209.
  44. Liebhold A., Koenig W., Bjornstad O.N. Spatial Synchrony in population dynamics // Annual Review of Ecology, Evolution, and Systematics. 2004. V. 35. P. 467–490.
  45. Maron J.L., Harrison S. Spatial patterns formation in an insect host-parasitoid system // Science. 1997. V. 278. P. 1619–1621.
  46. Miller W.E., Epstein M.E. Synchronous population fluctuations among moth species (Lepidiptera) // Environmental Entomology. 1986. V. 15. P. 443–447.
  47. Moran P.A.P. The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology // Australian J. Zoology. 1953. V. 1. P. 291–298.
  48. Myers J.H. Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect // Ecology. 1998. V. 79. № 3. P. 1111–1117.
  49. Peltonen V., Liebhold A., Bjornstad O.N., Williams D.W. Variation in spatial synchrony among forest insect species: roles of regional stochasticity and dispersal // Ecology. 2002. V. 83. P. 3120–3129.
  50. Pollard E. Synchrony of population fluctuations: the dominant influence of widespread factors on local butterfly population // Oikos. 1991. V. 60. P. 7–10.
  51. Ranta E., Kaitala V., Lundberg P. Population variability in space and time: the dynamics of synchronous populations // Oikos. 1998. V. 83. № 2. P. 376–382.
  52. Schowalter T.D. Insect Responses to Major Landscape-Level Disturbance // Annual Review of Entomology. 2012. V. 57. P. 1-20.
  53. Soukhovolsky V., Ovchinnikova T., Tarasova O., Ivanova Y., Kovalev A. Regulatory Processes in Populations of Forest Insects (a Case Study of Insect Species Damaging the Pine Pinus sylvestris L. in Forests of SIBERIA) // Diversity. 2022. V. 14 (10). P. 1038. https://doi.org/10.3390/d14121038
  54. Sutcliffe O.L., Thomas C.D., Yates T.J., Greatorex-Devies J.N. Correlation extinctions, colonisations and population fluctuations in a highly connected ringlet butterfly metapopulation // Oecologia. 1997. V. 109. P. 235–241.
  55. Van Rossum F., Triest L. Stepping-stone populations in linear landscape elements increase pollen dispersal between urban forest fragments // Plant Ecology and Evolution. 2012. V. 145. № 3. P.332-340.
  56. Volney W.J.A., Fleming R.A. Climate change and impacts of boreal forest insects // Agriculture, Ecosystems and Environment. 2000. V. 82. P. 283–294.
  57. Williams D.W., Liebhold A. Influence of weather on synchrony of gypsy moth (Lepidoptera: Lymantridae) outbreaks in New England // Environmental Entomology. 1995. V. 24. P. 987–995.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (742KB)
3.

Download (35KB)
4.

Download (42KB)
5.

Download (45KB)
6.

Download (37KB)
7.

Download (101KB)
8.

Download (42KB)

Copyright (c) 2023 О.В. Тарасова, П.А. Красноперова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies