

УДК 630.181.28

ВЛИЯНИЕ ПРИРОДНО-КЛИМАТИЧЕСКИХ ФАКТОРОВ НА СОСТОЯНИЕ И СОХРАННОСТЬ ИНТРОДУЦЕНТОВ ДЕНДРАРИЯ ЛЖАНЫБЕКСКОГО СТАЦИОНАРА¹

© 2024 г. М. К. Сапанов^{а, *}, М. Л. Сиземская^а, Н. А. Котельников⁶, М. М. Елекешева^в

^a Институт лесоведения РАН, ул. Советская, д. 21, с. Успенское, Одинцовский р-н, Московская обл., 143030 Россия ^бФакультет почвоведения МГУ им. М.В. Ломоносова, Ленинские горы, д. 1, стр. 12, Москва, 119991 Россия ^вЗападно-Казахстанский аграрно-технический университет им. Жангир хана, ул. Жангир хана, д. 51, г. Уральск, 090009 Казахстан *E-mail: sapanovm@mail.ru

> Поступила в редакцию 20.03.2024 г. После доработки 02.04.2024 г. Принята к публикации 29.08.2024 г.

Проанализированы результаты 70-летнего эксперимента по климатическому испытанию древесных и кустарниковых интродуцентов в условиях глинистой полупустыни Северного Прикаспия на богаре. Объектом исследований стал дендрарий Джаныбекского стационара, созданный в 1951 году в локальном понижении мезорельефа (падине) с лугово-каштановыми почвами и пресной линзой грунтовых вод на глубине 5.5-7.0 м с целью выявления перспективных видов растений для озеленительных мероприятий в регионе. Установлено, что наиболее сильное воздействие на сохранность интродуцентов, особенно с глубокой корневой системой (дуб, вяз, тополь), оказывает вторичное десуктивное засоление пресной линзы до 3-7 г/ π^{-1} , после которого деревья перестают ее использовать и погибают от недостатка влаги. Анализ динамики природно-климатических условий выявил наличие четырех циклов увлажненности, при которых состояние и сохранность интродуцентов резко меняются: в засушливые периоды с коэффициентом увлажнения ниже среднего (0.3±0.13) многие виды начинают суховершинить. При повторении засух из года в год отмечается массовое климатогенное усыхание интродуцентов. В дендрарии жизненное пространство погибающих растений занимают наиболее приспособившиеся к данным почвенно-гидрологическим условиям некоторые виды деревьев и кустарников (жимолость, клены, черемуха), образуя устойчивые разновидовые, разновозрастные кустарниковые заросли. За время существования дендрария коллекция интродуцентов сократилась с 211 до 73 видов, многие из которых сохранились лишь в виде самосевных экземпляров. Анализ длительного мониторинга их состояния позволяет рекомендовать для озеленения сохранившиеся виды, в том числе за счет самовозобновления.

Ключевые слова: аридные регионы, интразональные почвы, дендрарий, гибель интродуцентов, семенное распространение, засоление пресных вод, изменение климата.

DOI: 10.31857/S0024114824060045, **EDN:** NVMPCD

Искусственные лесные экосистемы в аридных регионах являются важными элементами в структуре лесоаграрных ландшафтов, выполняя разнообразные экологические функции. В этой связи интродукция древесных и кустарниковых растений как часть грандиозного советского проекта по лесомелиоративному освоению засушливых земель (так называемого плана преобразования природы), несомненно, представляет особый научный интерес. Это дает возможность изучения

в длительном временном ряду способности древесной и кустарниковой растительности существовать в несвойственных для нее условиях местопроизрастания, проявляя скрытые адаптивные реакции, в том числе при критических флуктуациях погодных условий и опасных природно-антропогенных явлениях.

В комплекс широкомасштабных работ, проводимых в середине XX века по защитному лесоразведению для климатического испытания

 $^{^{1}}$ Работа выполнена при финансовой поддержке Российского научного фонда (проект № 23-24-00164).

древесных и кустарниковых интродуцентов, было включено создание богарного (без полива) дендрария на Джаныбекском стационаре Института лесоведения РАН, который расположен в Северном Прикаспии междуречья Волги и Урала.

Непосредственное научное обоснование способов создания и подбор ассортимента пород проводил видный ученый, один из основоположников учения о почвенной влаге, бессменный научный руководитель стационара А.А. Роде с коллегами: М.М. Абрамовой, А.Ф. Большаковым, М.Н. Польским, С.Д. Эрперт, С.Н. Карандиной и другими сотрудниками. Нам известно, что А.А. Роде обсуждал закладку дендрария с В.Н. Сукачевым и Н.И. Сусом.

С момента формирования дендрария в течение трех десятилетий за его состоянием наблюдала С.Д. Эрперт, которая с С.Н. Карандиной подвели первые 20-летние итоги сохранности интродуцентов (Карандина, Эрперт, 1972). Особенности функционирования дендрария за 45-летний период были представлены в монографии Н.Г. Сенкевич и И.Н. Оловянниковой (1996). Во многих других работах были изучены механизмы приспособления отдельных видов к изменяющимся природно-климатическим условиям, в том числе показано воздействие самих древостоев на условия местопроизрастания (Чистые культуры..., 1961; Киссис, Польский 1963: Оловянникова, 1977, 1991, 1996: Быков и др., 1993; Линдеман, 1993; Сапанов, 2003; Сиземская, 2013; Колесников, 2019; Кулакова, 2020; и др.). Эти исследования внесли существенный вклад в возможность изучения причин преждевременного исхода или сохранности интродуцентов в дендрарии за весь 70-летний период его существования.

При этом за последние 25 лет итоги этого интродукционного эксперимента приводились лишь в виде единичных статей (Sizemskaya, Sapanov, 2023; Сиземская, Сапанов, 2024). До сих пор не показан общий сценарий развития дендрария, не изучены причины разновременной гибели тех или иных интродуцентов, нет полноценной оценки их возобновительной способности. Такой анализ был бы актуален тем, что выявленные зависимости, по-видимому, имеют всеобщий характер, который присущ искусственным лесным экосистемам, выращиваемым в аналогичных условиях местопроизрастания в широкой географической амплитуде степной природной зоны (Сапанов, Сиземская, 2020).

Наша цель — выявить этапы и отличительные особенности развития и исхода многих интродуцентов в дендрарии по мере их взросления на фоне изменения природно-климатических условий и интенсивности агротехнических и лесоводственных уходов с определением наиболее устойчивых видов деревьев и кустарников, в том

числе за счет самовозобновления, для выяснения потенциала их использования в защитном лесоразведении и озеленении.

ОБЪЕКТЫ И МЕТОДИКА

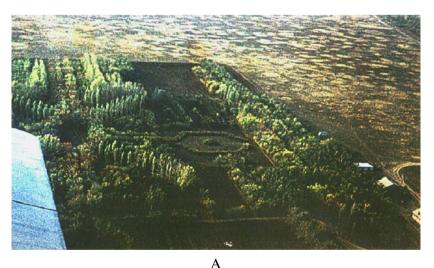
Рассматриваемый дендрарий создан в рамках уникального рукотворного агролесомелиративного комплекса – Джаныбекского стационара Института лесоведения РАН (49.3980 °N, 46.7960 °E). Стационар расположен на тяжелосуглинистой исконно безлесной бессточной равнинной территории, которая репрезентативна для ландшафтов суббореальных полупустынь и, согласно ботанико-географическому районированию, относится к Заволжско-Казахстанской провинции Евразиатской степной области, к округу пустынных ромашниково- и белополынно-дерновинно-злаковых степей (Доскач, 1979). Особенности почвенно-растительного покрова обусловлены наличием микрорельефа: на микроповышениях развиты солончаковые солонцы с чернополыннопрутняковыми растительными сообществами, на микросклонах - светло-каштановые почвы с ромашниково-типчаковыми сообществами, в микропонижениях (западинах) — лугово-каштановые почвы с разнотравно-злаковыми сообществами. На этой территории также присутствуют крупные мезопонижения (большие падины), каждая площадью от 1 до 100 га, с такими же лугово-каштановыми почвами, которые занимают до 10–12% от всей площади (Роде, Польский, 1961; Роде, 1963; Гордеева, Ларин, 1965).

Главной особенностью гидрологии этой равнинной территории, которая ранее была дном Каспийского моря, является бессточность и засоленность грунтовых вод, залегающих на глубине 5-6 м. Основной круговорот воды происходит в результате так называемого потускулярного влагообмена, когда атмосферные осадки, периодически заполняя понижения рельефа в процессе весеннего поверхностного стока талых вод, инфильтруются с образованием пресных линз, которые затем участвуют в общей эвапотранспирации экосистем. Постоянное гидростатическое выравнивание общего уровня грунтовых вод и пресных линз на фоне прихода и расхода влаги определяет его ежегодную динамику и зеркальную застойную засоленность: под солонцами — до $10 \, \Gamma/\pi^{-1}$, светло-каштановыми почвами — до 5 г/ π^{-1} , лугово-каштановыми почвами менее 1 г/л-1. Данное описание очень важно, так как в дендрарии увеличенная эвапотранспирация древостоев (относительно бывшей здесь целинной разнотравно-злаковой растительности) существенным образом меняет гидрологический режим и засоляет пресную линзу (Киссис, Польский, 1963; Сапанов, 2000, 2003).

Дендрарий был заложен на одной из падин площадью около 6 га и состоит из аллейных, куртинных и массивных посадок (рис. 1, A), в составе которых первоначально было высажено около 211 видов деревьев и кустарников. Куртины из нескольких одновидовых экземпляров объединялись в так называемые «кварталы» и отделялись друг от друга аллеями, главным образом, из высокоствольных видов деревьев (Карандина, Эрперт, 1972). Небольшие многорядные массивы чистых и смешанных перспективных культур были посажены по краям дендрария.

Наиболее острой проблемой, которую необходимо было решить перед созданием дендрария, стало постепенное десуктивное засоление пресной линзы, которое уже тогда было известно по наблюдениям в урочище Новая жизнь, расположенном на подобной падине в 5 км от Джаныбекского стационара (Киссис, Польский, 1963). Предполагалось, что проблема будет снята, если оставлять под поляны без лесной растительности около 1/3-1/5 части падины с ежегодным их перепахиванием для уничтожения травяной растительности, а пресная вода из-под полян боковым подтоком будет замещать десуктивный расход интродуцентов (Карандина, Эрперт, 1972; Сенкевич, Оловянникова, 1996). Однако по прошествии некоторого времени стало понятно, что этого не происходит. Лишь через несколько десятилетий удалось выявить механизм вторичного засоления пресной линзы.

При анализе особенностей сохранности интродуцентов были использованы выявленные сотрудниками стационара закономерности функционирования отдельных видов деревьев и кустарников на организменном и экосистемном уровнях, а также собственные 45-летние наблюдения авторов.


Замеры уровней грунтовых вод проводили в наблюдательных скважинах под разными культурами в дендрарии, состав и минерализацию грунтовых вод определяли в полевой химической лаборатории Джаныбекского стационара общепринятыми методами (Воробьева, 1998). Названия растений даны по The Plant list (2013).

Погодные условия приводятся по данным Жанибекской метеостанции Казгидромета, которая расположена в 4 км от стационара. Испаряемость вычислялась за каждый месяц вегетационного сезона (апрель-сентябрь) с использованием средних многолетних месячных данных по температуре и относительной влажности воздуха по формуле Н.Н. Иванова (1962). Общеизвестный коэффициент увлажнения (Реймерс, 1990) был нами видоизменен и вычислялся делением количества осадков за гидрологический год (октябрьсентябрь) на испаряемость вегетационного сезона (КУ). В этом случае по количеству осадков за холодный период года более полно учитываются физические условия формирования весеннего почвенного влагонакопления, а соотношение осадков и испаряемости в теплый период года показывает увлажненность вегетационного сезона (Сапанов, Сиземская, 2020).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

История создания дендрария

Первоначально коллекция Джаныбекского дендрария насчитывала 211 видов деревьев и кустарников. Особенности их выживания и сохранности до 15–18-летнего возраста рассмотрены в монографии С.Н. Карандиной и С.Д. Эрперт (1972), в которой, кроме наблюдения за сохранностью растений, приводятся данные мониторинга ежегодного расхода почвенной влаги. Отмечено, что

Рис. 1. Дендрарий Джаныбекского стационара: А – аэрофотоснимок начала 1980-х годов, Б – снимок из Google (2006 г.).

несколько десятков видов не прижились и погибли в первые же годы выращивания из-за зимнего вымерзания и быстрого летнего иссушения почвы: орех грецкий (Júglans régia), буддлея (Buddleia davidii), пузырник (Colútea), ракитник австрийский (Cytisus austriacus), магония падуболистная (Mahonia aquifolium), чубушник Левиза (Philadelphus lewisii), сосна горная (Pinus mugo), сирень амурская (Syrínga amurénsis), леспедеца (Lespedeza) и др. Из числа прижившихся растений 12 видов погибло в 1956 г. вследствие предыдущего, очень засушливого 1955-го г., которому к тому же предшествовал бесснежный 1954 г. Многие виды ослабли после двухлетней засухи в 1965-1966 гг. К началу 1970-х гг. сохранилось около 120 видов древесных и кустарниковых растений.

Вторая ревизия сохранности древесной растительности до 40-летнего возраста была проведена Н.Г. Сенкевич и И.Н. Оловянниковой (1996). Ими отмечалось количество выпавших видов, состояние сохранившихся и их способность к генеративному воспроизводству и возобновлению. Отмечено, что до 1964 г. интродуценты в дендрарии выращивались по «садовому» типу, но без внесения удобрений и проведения полива: ежегодно перепахивали междурядья и поляны, регулярно обрезали кроны деревьев, проводили их штамбовку, убирали самосев. Уходы за почвой в междурядьях прекратили в 1964 г., уничтожение нежелательного самосева — в 1970 г. Лесоводственные уходы постепенно свелись лишь к уборке сухостоя. Это привело к существенному, до 100 видов, сокращению коллекции интродуцентов в дендрарии, а также к появлению излишнего многочисленного жизнеспособного самосева некоторых видов деревьев и кустарников, в том числе на полянах с чистым паром – «магазинах влаги». Зарастание этих полян и изменения ранее четкого геометрического строения дендрария хорошо заметны на современных космических снимках (рис. 1, Б). С середины 1970-х гг. началось формирование одноярусных и многоярусных, чистых и смешанных древостоев из посаженных взрослых деревьев и кустарников с включением разновидового самосева. За 40-летний период лучше всего сохранились мезофильные виды бореального происхождения (Сенкевич, Оловянникова, 1996).

С середины 1990-х гг. в дендрарии совсем прекратились любые агротехнические и лесоводственные уходы, интродуценты были оставлены на саморазвитие. В образовавшиеся куртины и небольшие массивы разного породного состава внедрились виды лесных животных, в том числе птицы, мышевидные грызуны, вредители-фитофаги (Быков и др., 1993; Линдеман, 1993; Быков, 2010; Сапанов, 2010). Возникновение этих искусственных биогеоценозов со специфическими

взаимоотношениями между компонентами, безусловно, усложняет задачу выявления механизмов их выживания. Однако очевидно, что в засушливом регионе именно дефицит воды определяет течение и специфику их гибели в процессе внутри- и межвидовой конкуренции, в том числе в результате ослабления вторичными вредителями и болезнями.

Особенности адаптации отдельных видов деревьев к засушливым условиям

На Джаныбекском стационаре значительная часть научных работ посвящена изучению особенностей функционирования искусственных лесных экосистем. Именно эти исследования позволяют понять развитие, сохранность и отпад тех или иных интродуцентов, произрастающих в дендрарии.

Для понимания этих особенностей во времени необходимо показать уже выявленные природноклиматические условия, которые достоверно лимитируют рост и состояние отдельных видов деревьев. Сопряженная динамика ежегодных радиальных приростов некоторых видов деревьев указывает на то, что они зависят от одних и тех же факторов среды обитания (Сапанов, 2003). В сезонном развитии деревьев выявлено функциональное различие влаги весеннего почвенного накопления за счет осенне-зимних осадков, из грунтовых вод и летних осадков. Например, деревья дуба черешчатого (Quercus robur) накопленную весной воду с растворенными в ней питательными веществами расходуют на образование листовой массы и приращение ствола. Вода из пресных линз не участвует в формировании биомассы, а расходуется летом на накопление запасных веществ в процессе фотосинтеза, которое необходимо для дыхания ствола и распускания листовой массы на следующий год. Поэтому почвенная засуха из-за нехватки воды весеннего влагонакопления уменьшает приросты, а при ухудшении десукции из грунтовых вод взрослые деревья вовсе погибают. Влага атмосферных осадков вегетационного периода в совокупности с температурным режимом воздуха в основном регулируют степень атмосферной засухи, улучшая или ухудшая общее состояние дерева, но мало участвуют непосредственно в транспирации, так как редко промачивают почву из-за их небольшого количества (Сапанов, 2006).

Отметим, что деревья дуба всех рангов развития в древостоях в экстремальный по засухе 1972 г. уменьшили приросты не только в этот, но в последующие 5—6 лет, вне зависимости от их увлажненности. Видимо, засуха 1972 г. затронула течение физиологических процессов на организменном уровне. Особо опасно повторение сильной почвенной засухи из года в год, при котором многие виды деревьев погибают (Сапанов, 2003; Сапанов, Сиземская, 2020).

Вяз приземистый*

Участок	УГВ, м	Минерализация, г/л ⁻¹	CO ₃ ²⁻	HCO ₃ -	Cl-	SO ₄ ²⁻	Ca ²⁺	Mg ²⁺	Na ⁺
			ммоль(+)/л ⁻¹						
Целина	6.05	0.836	0	6.3	4.6	1.4	4.7	3.7	3.8
Дуб черешчатый	7.16	5.206	0	4.2	47.9	35	43.4	28.1	15.6
Ясень пенсильванский	6.30	0.870	0.8	5.7	6.5	0.8	6.2	2.6	4.2
Боярышник однопестичный	6.30	1.423	1.4	5.5	16.4	1.3	7.7	6.5	9.0
Ирга круглолистная	6.35	1.144	0	4.3	13.1	1.6	7.9	6.9	4.2

Таблица 1. Состав и минерализация почвенно-грунтовых вод на падине под целинной растительностью и в дендрарии под разными 40-летними культурами

Примечание. *- в двухрядной полосе на падине вне дендрария.

0.880

6.10

Рассмотрим этот процесс на более изученном ясене пенсильванском (Fraxinus pennsylvanica), имеющем поверхностную корневую систему и слабо использующем влагу из капиллярной каймы пресной линзы. При сезонном исчерпании продуктивной влаги из почвы у ясеня начинается преждевременное пожелтение и опадение листьев, например, уже в конце июля. Удивительно, что ясень остается в живых даже при ежегодном повторении такого сценария. Очевидно, это связано с тем, что он является одним из немногих видов деревьев, который успевает накопить к этому времени запасные вещества в процессе фотосинтеза для последующего дыхания ствола и начала вегетации на следующий год (Цельникер, 1960). Однако такая почвенная засуха, повторяющаяся из года в год, все же вызывает постепенное ослабление взрослых деревьев, которое регистрируется по разреживанию кроны и постепенному усыханию ствола, начиная с верхушечной части, с появлением многочисленных водяных побегов из спяших почек. В последнюю очередь гибнут многолетние водяные побеги у его основания. Однако при улучшении погодноклиматических условий основной усыхающий ствол дерева постепенно зарастает благодаря усиленному росту боковых ветвей. Именно в таком перманентно ослабленном состоянии существуют в течение многих лет культуры ясеня, в том числе в дендрарии.

Особенности функционирования сомкнутых лесных культур

Прежде всего, необходимо было учесть механизм постепенного засоления пресной линзы, происходящий вследствие чрезмерной десукции некоторых видов с якорной корневой системой, например, как у дуба черешчатого и вяза приземистого (Ulmus pumila), которые образуют второй ярус из ростовых и всасывающих корней

в капиллярной кайме пресной линзы. Расход воды из пресной линзы такими насаждениями составляет более 50% от всей эвапотранспирации, что вызывает сезонное образование в ней депрессионных воронок глубиной до 2.5 м (Киссис, Польский, 1963; Оловянникова, 1977; Сапанов, 2003).

8.5

3.3

8.3

1.9

Замещающий подток в эту воронку осуществляется вертикальным гидростатическим подъемом воды из засоленного межпластового горизонта за счет коррективного выравнивания общего уровня в ландшафте. Именно этот процесс вызывает постепенное засоление пресной линзы с 25-летнего возраста древостоев до такой концентрации, что, например, дубы внутри насаждения перестают его использовать и постепенно погибают при засолении более 5-7 г/л. При этом периодически пополняющая пресную линзу талая вода расходуется полностью такими древостоями в течение одного-двух лет. Опресненным остается лишь приопушечная зона древостоев из-за бокового подтока пресной воды из-под целинной части падины, которая, в свою очередь, периодически пополняется при весенних затоплениях этих низин (Сапанов, 2005). Как видим, пресная вода из-под оставленных в дендрарии «магазинов влаги» влияет лишь на деревья и кустарники, расположенные в приопушечной зоне.

В дендрарии под разными интродуцентами уровень засоления пресной линзы сильно различается вследствие того, что деревья и кустарники с поверхностной корневой системой слабо используют или совсем не используют влагу из пресной линзы (табл. 1).

Поэтому достаточно трудно выявить первопричину гибели каждого вида. Для этого, например, надо определить под ними ежегодный

расход продуктивной влаги из почвы и динамику засоления пресной линзы. Тем не менее сценарий проявления дефицита воды во всех случаях одинаковый: разреживание кроны и начало усыхания дерева с верхушечной части ствола, а в многорядных культурах — гибель срединных экземпляров.

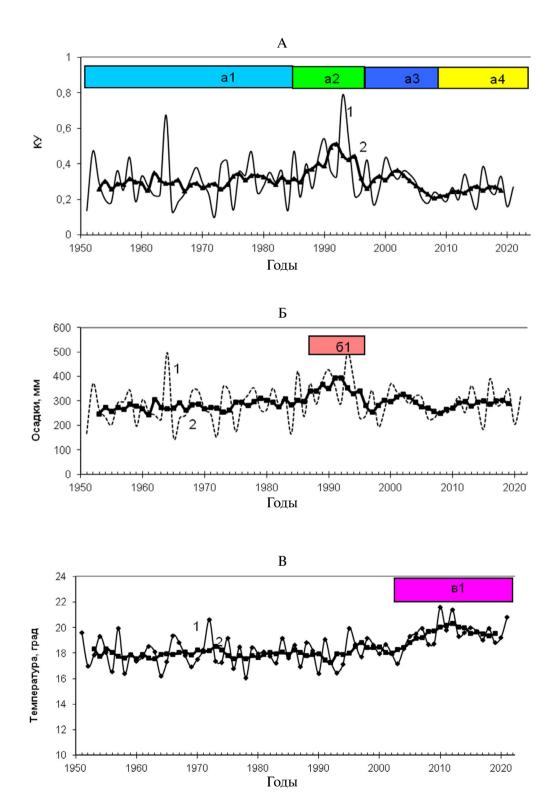
При этом неистощительный гидрологический режим пресных линз возможен только под небольшими куртинами, где замещение десуктивно израсходованной воды происходит за счет бокового подтока из-под целины. Этот тезис подтверждают сохранившиеся на падинах в течение 100 лет единичные деревья дуба черешчатого, оставшиеся на месте бывших садов, а также куртина вяза гладкого (*Ulmis laevis*), клон терна (*Prunus spinosa*) в урочище Енбекши и двухрядные 70-летние лесополосы из вяза приземистого, которые успешно выращиваются на стационаре (табл.).

Сохранность интродуцентов под влиянием изменения природно-климатических условий и хозяйственной деятельности в дендрарии

В дендрарии некоторые интродуценты сразу же погибли, например, из-за слабой зимостойкости (Карандина, Эрперт, 1972). Состояние прижившихся растений оказалось в сильной зависимости от динамики общей увлажненности вегетационного сезона, весеннего почвенного влагонакопления, доступности воды из пресной линзы, а также увеличения межвидовых конкурентных взаимоотношений по мере появления вблизи них самосевных экземпляров других видов.

Оказалось, что на состояние лесных насаждений сильно воздействует изменение климата, которое легко прослеживается по динамике коэффициента увлажнения. В частности, были выявлены различающиеся друг от друга климатические периоды, которые существенным образом сказались на жизнестойкости лесонасаждений (Сапанов, Сиземская, 2020).

Динамика коэффициента увлажнения за 70-летний период (1951-2021 гг.) имела большую амплитуду от 0.1 (1972 г.) до 0.79 (1993 г.). При среднем значении $KY 0.3\pm0.13$ за 1951-2021 гг. выделяются периоды лучшего и худшего увлажнения (рис. 2).


Первый период (1951-1986 гг.) отличается устойчивым динамически равновесным состоянием увлажненности вблизи среднего значения (КУ — 0.29±0.12), что связано с такими же трендами динамики температурного режима воздуха за теплый период года и количеством атмосферных осадков за гидрологический год. Отмечены годы с сильнейшими засухами (1965, 1972, 1975, 1984 гг.), среди них особо выделяется экстремально засушливый 1972 г., после которого состояние многих видов деревьев ухудшились, что было заметно по уменьшению их приростов на несколько

лет вне зависимости от последующего улучшения погодно-климатических условий (Сапанов, 2003).

В этот период каких-либо общих закономерностей гибели интродуцентов не было выявлено. Очевидно, погибали те виды, которые сильно увеличили свои размеры и не смогли привести в равновесное состояние листовую массу с периодически возникающим дефицитом продуктивной почвенной влаги. Во всяком случае. их гибель происходила по схожему сценарию ослабления: постепенное разреживание кроны и увеличение суховершинности ствола, как у ясеня пенсильванского. Так начали погибать в 1980-е гг. два отдельно стоящих экземпляра клена сахарного (Acer saccharum), несколько десятков кленов гиннала (A. ginnala) и полевого (A. campestre), четыре дерева березы пушистой (Betula pubescens), несколько видов боярышников и тополей, например тополь пирамидальный (Pópulus nígra var. Itálica), краснонервный (P. ×rubrinerva), берлинский (P. ×berolinensis) и некоторые другие гибриды, несколько кустов лоха серебристого (Elaeagnus commutata), аронии черноплодной (Arónia melanocárpa) вишни войлочной (Prunus tomentosa), рябины гибридной (Sorbus hybrida). Эти виды не оставили после себя самосевных экземпляров. Наиболее примечательна гибель материнских деревьев в куртине каркаса западного (Celtis occidentalis), единичный самосев которого до сих пор присутствует в дендрарии.

Кроме этого, в одной из больших падин в вязовом колке уже начался отпад срединных деревьев из-за вторичного засоления пресной линзы (Оловянникова, Линдеман, 2000). При этом опушечные деревья вяза до сих пор живы (70 лет). В целом этот период в дендрарии пережило около 100 видов деревьев и кустарников (Сенкевич, Оловянникова, 1996).

Второй период (1987-1994 гг.) отличался исключительно благоприятными погодными условиями $(KY - 0.46\pm0.16)$, главным образом, за счет увеличения осадков. В это время интродуценты улучшали свое состояние до такой степени, что происходило зарастание кроны у суховершинных деревьев усиленным замещающим ростом боковых ветвей. Наиболее заметно этот процесс происходил у повсеместно распространенного вяза приземистого и ясеня пенсильванского. В этот период отмечался климатогенный подъем уровня грунтовых вод, который улучшил влагообеспеченность деревьев с поверхностной системой, например ясеня пенсильванского, резко увеличившего радиальные приросты стволов (Сапанов, 2019). Улучшение погодных условий также доказывается устойчивым повышением урожайности зерновых культур (Сапанов, 2018).

Рис. 2. Важнейшие климатические показатели, регулирующие функционирование интродуцентов (1 — ежегодные данные, 2 — 5-летние скользящие): A — коэффициент увлажнения (KУ) (a1, a2, a3, a4 — периоды увлажненности территории, отличающиеся трендами и скоростями); B — осадки за гидрологический год (b1 — период повышенной увлажненности); B — среднемесячная температура воздуха теплого полугодия (b1 — период резкого повышения температуры).

В то же время из-за продолжающегося вторичного засоления пресной линзы под массивами культур из дуба черешчатого и разных видов тополей начался процесс массовой гибели деревьев внутри древостоя, а вяз приземистый в рассматриваемом выше отдельном колке погиб полностью (Сапанов, 2005). Однако все остальные виды интродуцентов благополучно пережили этот период.

Третий период (1995—2005 гг.) характеризуется отрицательным трендом увлажненности до его среднего значения ($KY - 0.31 \pm 0.08$) за счет устойчивого повышения температуры воздуха.

Четвертый период (2006-2021 гг.) оказался наиболее засушливым ($KY-0.24\pm0.07$) вследствие постоянно жарких вегетационных сезонов (рис. 2).

Данные периоды изменчивости КУ различаются трендами и характеризуются резким ухудшением условий, вплоть до повторяющихся сильных засух из года в год в течение шести лет (2006—2012 гг.). Именно в эти годы произошла гибель многих древесно-кустарниковых видов в дендрарии.

Процесс исхода многих из них усилился за счет конкуренции с появившимся в это время вблизи них разновидового самосева. Так, например, усохли единственный экземпляр калины (Vibúrnum ópulus), несколько кустов айвы японской (Chaenomeles japonica) и бересклета Маака (Euónymus maáckii), два куста птелеи (Ptelea trifoliata). Примечательна судьба двух кустов сумаха (Rhus typhina), оставивших после себя многочисленные корневые отпрыски, которые впоследствии заросли самосевом других видов и также погибли в этот период.

Многие виды крупных деревьев и кустарников погибли при отсутствии вблизи них самосева, однако в ранее мертвопокровные приствольные круги внедрился типчак (Festuca valesiaca) и другие травянистые растения, которые, по-видимому, начали успешно конкурировать с интродуцентами за почвенную влагу. Так усохли два дерева абрикоса маньчжурского (Prunus mandshurica), ряды из каштана конского (Aesculus hippocastanum), материнские деревья клена остролистного (Acer platanoides) и серебристого (A. saccharinum), липы мелколистной (Tilia cordata) и американской (T. americana), рябины обыкновенной (Sorbus aucuparia).

Ревизия состояния посаженных деревьев и кустарников в дендрарии, проведенная в 2021—2023 гг., показала, что в коллекции сохранилось 73 вида. Однако наличие в дендрарии многочисленного жизнеспособного самосева 60 видов (рис. 3) дает надежду на дальнейшее функционирование дендрария (Сиземская, Сапанов, 2024).

Возобновительная способность интродуцентов

Современный процесс исхода многих видов интродуцентов и распада многорядных колков в дендрарии сглаживается появлением и сохранностью многочисленного самосева, в том числе от уже погибших видов. На стационаре многие интродуценты не цветут вовсе, другие не производят семян, или они не вызревают, у некоторых видов семена не укореняются, и лишь некоторая часть деревьев и кустарников дает полноценный семенной самосев. Некоторые виды образуют корнеотпрысковые клоны. В дальнейшем развитие и сохранность возобновившихся видов регулируется меж- и внутривидовой конкуренцией (Сенкевич, 1995; Сенкевич, Оловянникова, 1996; Сапанов, 2010).

Самосев от 60 видов (преимущественно кустарниковых) появляется внутри распадающихся куртин и массивов, на месте погибших одиночных деревьев и кустарников. Этот массовый разновозрастный самосев формирует вторичные заросли из наиболее жизнеспособных и адаптированных видов интродуцентов. Встречаются также устойчивые, разновозрастные клоны, образованные корневыми отпрысками тополя белого (*Populus alba*), черемухи виргинской (*Prunus virginiana*), терна.

Заселение самосева в разные места происходит постепенно и представляет собой достаточно сложный процесс. Например, в дендрарии в культурах дуба черешчатого в начальной стадии размыкания древесного полога из-за гибели единичных деревьев начал появляться самосев кустарников: боярышников однопестичного (*Cra*taegus monogyna) и полумягкого (С. submollis), ирги (Amelanchier spicata), смородины золотой (Ribes aureum), крушины (Rhamnus cathartica), черемухи. Однако затем, по мере распада древостоя, здесь сформировался густой подлесок высотой 5-6 м из клена остролистного с долей участия 20-30%, единично груши обыкновенной (Pvrus communis), ирги высотой 1-3 м (20-30% участия), боярышника высотой до 1.5 м и черемухи высотой до 1 м (по 10% участия), клена татарского высотой до 0.5 м и других. Сомкнутость подлеска превысила 70%. Травянистая растительность под ним отсутствует, лишь в небольших окнах, свободных от деревьев и кустарников, продолжает произрастать интродуцированный ландыш майский.

На месте распавшегося тополевника образовался чистопородный ирговник, на бывших полянах и в местах произрастания отдельных интродуцентов вселились преимущественно жимолость татарская (Lonicera tatarica), клен Семенова (Acer semenovii), скумпия (Cotinus coggygria), смородина золотая.

На данный момент (2023 г.) в местах гибели посаженных деревьев и кустарников продолжается

формирование куртинных лесонасаждений кустарникового типа с общей верхней высотой 6—7 м и проективным покрытием до 60—80%. Всего в дендрарии насчитывается 60 видов самосевных интродуцентов (Сиземская, Сапанов, 2024).

Эти лесные экосистемы, образовавшиеся в процессе вторичной сукцессии, по-видимому, могут функционировать достаточно долго при условии отсутствия дальнейшего засоления ими пресной линзы. В случае же продолжения засоления, очевидно, может произойти смена деревьев и кустарников на аборигенные травянистые виды. Аналогичный процесс сукцессии ранее нами был отмечен при распаде смешанных тополевых культур в урочище Новая жизнь, куда внедрился клен ясенелистный (Acer negundo), который образовал чистопородный, разновозрастный, мертвопокровный колок. Затем этот кленовник стал распадаться с внедрением травянистых растений.

Демутационный процесс с полным восстановлением травянистых сообществ продолжался здесь около 20 лет (Сапанов, Сиземская, 2021).

Необходимо отметить, что на исконно целинные участки больших падин, а тем более на почвы солонцового комплекса, деревья и кустарники семенным или вегетативным путем (корневые отпрыски) естественным образом не проникают. Однако при наличии вблизи плодоносящих экземпляров некоторые виды могут встречаться изредка на старопахотных землях; чаще встречаются в искусственных выемках земли, заброшенных прудах, вдоль транспортных путей и каналов, в траншеях и ямах (Сиземская и др., 2020).

Таким образом, 70-летний эксперимент по акклиматизации деревьев и кустарников показал возможность их длительного существования на лугово-каштановых почвах мезопонижений рельефа Прикаспийской равнины. При этом

Рис. 3. Участки 70-летнего дендрария: A-c аллеей из катальпы бигнониевидной (*Catalpa bignonioides*) и рядами березы повислой (*Betula pendula*); B-c массивным насаждением дуба черешчатого и интродуцированным ландышем майским (*Convallaria majalis*); B-c зарастающей разновидовым самосевом поляной; $\Gamma-c$ единичным разновидовым самосевом.

основным условием лесовыращивания здесь является недопущение засоления пресных линз, которое можно обеспечить лишь посадкой деревьев, особенно со стержневыми корневыми системами в виде небольших куртин площадью $10 \times 10 \text{ м}^2$ или узких лесополос шириной не более нескольких метров, равномерно удаленных друг от друга на значительные расстояния. Только при таком расположении их десуктивный расход из пресной линзы будет замещаться боковым подтоком воды из-под целины, которая, в свою очередь, будет периодически пополняться инфильтрационными водами во время весеннего затопления падин талыми водами. При этом пресная линза под деревьями не будет истощаться и будет всегда им доступна. Именно этот механизм использования во время засухи из глубинных слоев почвогрунта влаги, которая была предварительно накоплена за счет дополнительного снегозадержания и/или поверхностного притока талых вод, поддерживает функционирование лесонасаждений на должном уровне на любых исконно безлесных степных типах почв (Сапанов, Сиземская, 2020). Решение всех других проблем вполне возможно в рамках оптимизации ассортимента пород и проведения хозяйственных мероприятий (агротехнические и лесоводственные уходы).

На современном этапе можно констатировать, что найдены подходы к созданию устойчивых лесонасаждений на лугово-каштановых почвах полупустынной территории для озеленения населенных пунктов. С точки зрения долголетнего их существования можно рекомендовать: дубы черешчатый и северный (Quercus borealis), березу повислую, клены татарский (Acer tataricum) и Семенова, робинию лжеакацию (Robinia pseudoacacia), карагану древовидную (Caragana arborescens), вяз гладкий и приземистый, ясень обыкновенный (Fraxinus excelsior) и пенсильванский, лох остроплодный (Elaeagnus oxycarpa), тополь белый, яблоню лесную (Malus sylvestris), вишню обыкновенную (Prunus cerasus), жимолость татарскую, иргу колосистую, сирень обыкновенную (Syringa vulgaris), кизильник блестящий (Cotoneaster lucidus), лещину обыкновенную (Corylus avellana), розу морщинистую (*Rosa rugosa*), смородину золотую, терн, скумпию, миндаль низкий (Prunus tenella), снежноягодник (Symphoricarpos albus), спирею зверобоелистную (Spiraea hypericifolia) и другие виды. Хотя некоторые из перечисленных видов и относятся к чужеродным, характеризующимся в некоторых регионах высокой инвазионной активностью (Виноградова и др., 2010), в условиях полупустыни их распространение и воздействие ограничено в связи с особенностями природноклиматических условий региона (Sizemskaya, Sapanov, 2023).

Проводимый на Джаныбекском стационаре интродукционный эксперимент не имеет мировых аналогов как по длительности, так и по изученности причинно-следственных взаимосвязей между компонентами формирующихся лесных экосистем на лучших интразональных почвах аридных территорий. Поэтому продолжение мониторинга состояния дендрария является одной из приоритетных задач исследований Джаныбекского стационара.

ЗАКЛЮЧЕНИЕ

На Прикаспийской низменности междуречья Волги и Урала в середине 1950-х гг. образован Джаныбекский стационар Института лесоведения РАН, в его рамках создан богарный дендрарий (без полива) на интразональной лугово-каштановой почве большой падины, представляющей собой локальное замкнутое мезопонижение с пресной линзой воды на глубине 5—6 м.

В ходе 70-летнего наблюдения за почвенногидрологическими условиями и состоянием деревьев и кустарников в этом дендрарии на фоне климатогенного изменения природной среды было выявлено, что основной причиной массовой гибели интродуцентов является вторичное десуктивное засоление пресной линзы, которое постепенно уменьшает их влагопотребление. Еще одной причиной ухудшения состояния интродуцентов являются почвенные засухи (опосредованно оцениваемые коэффициентом увлажнения), при повторении которых из года в год многие интродуценты быстро погибают. Остальные, ослабленные засухой, уступают свое жизненное пространство (площадь влагопотребления) самосеву иных видов, которые со временем также вызывают их гибель.

Итогом богарной акклиматизации деревьев и кустарников является постепенное вторичное засоление пресной линзы и неуправляемое распространение самосевных экземпляров некоторых видов, формирующих устойчивые кустарниковые заросли на месте выпавших интродуцентов.

Полученный в ходе натурного 70-летнего эксперимента материал позволяет предложить для устойчивых озеленительных насаждений ассортимент надежных видов деревьев и кустарников и оптимизировать способы их создания, обеспечивающие неистощительный гидрологический режим пресных линз грунтовых вод.

СПИСОК ЛИТЕРАТУРЫ

Быков А.В. Значение древесно-кустарниковой растительности для позвоночных животных глинистой полупустыни Заволжья // Аридные экосистемы. 2010. Т. 16. № 5 (45). С. 90–97.

Быков А.В., Оловянникова И.Н., Сапанов М.К. Роль зоогенных факторов при создании колочно-западинного ландшафта в глинистой полупустыне Заволжья // Лесоведение. 1993. № 6. С. 27—33.

Виноградова Ю.К., Майоров С.Р., Хорун Л.В. Черная книга флоры Средней России: Чужеродные виды растений в экосистемах Средней России. М.: ГЕОС, 2010. 503 с.

Воробьева Л.А. Химический анализ почв. М.: МГУ, 1998. 272 с.

Гордеева Т.К., Ларин И.В. Естественная растительность полупустыни Прикаспия как кормовая база животноводства. М.-Л.: Наука, 1965. 160 с.

Доскач А.Г. Природное районирование Прикаспийской полупустыни. М.: Наука, 1979. 144 с.

Иванов Н.Н. Показатель биологической эффективности климата // Известия Всесоюзного географического общества. М.-Л.: АН СССР. 1962. Т. 94. № 1. С. 65–70.

Карандина С.Н., Эрперт С.Д. Климатическое испытание древесных пород в Прикаспийской полупустыне. М.: Наука, 1972. 127 с.

Киссис Т.Я., Польский М.Н. Водный режим темноцветной черноземовидной почвы большой падины под древесным насаждением // Водный режим почв полупустыни. М.: АН СССР, 1963. С. 84—126.

Колесников А.В. Водный режим и водный баланс лугово-каштановых почв под колочными лесными насаждениями в Северном Прикаспии // Вестник Поволжского государственного технологического университета. Серия: Лес. Экология. Природопользование. 2019. № 4 (44). С. 48–58.

Кулакова Н.Ю. Особенности круговорота биофильных элементов в подстилках экосистем полупустыни Северного Прикаспия // Почвоведение. 2020. № 11. С. 1341—1352.

Линдеман Г.В. Взаимоотношения насекомых-ксилофагов и лиственных деревьев в засушливых условиях. М.: Наука, 1993. 206 с.

Оловянникова И.Н. Баланс влаги в черноземовидной почве под насаждением вяза мелколистного // Почвоведение. 1977. № 12. С. 77–87.

Оловянникова И.Н. Влияние вязового насаждения на гидрологический режим почв падин полупустыни Северного Прикаспия // Почвоведение. 1991. № 7. С. 116—126.

Оловянникова И.Н. Влияние насаждений вяза приземистого на водно-солевой режим черноземовидных почв депрессий Прикаспийской полупустыни // Лесоведение. 1996. № 3. С.30—41.

Оловянникова И.Н., Линдеман Г.В. О причинах недолговечности культур вяза мелколистного на юговостоке Европейской России в лучших условиях роста // Лесоведение. 2000. № 5. С.22—42.

Реймерс Н.Ф. Природопользование. М.: Мысль, 1990. 637 с.

Роде А.А. Водный режим и баланс целинных почв полупустынного комплекса // Водный режим почв полупустыни. М.: АН СССР, 1963. С. 5–83.

Роде А.А., Польский М.Н. Почвы Джаныбекского стационара, их морфологическое строение, механический и химический состав и физические свойства // Труды Почвенного института им. В.В. Докучаева, 1961. Т. 56. С. 3—214.

Сапанов М.К. Оценка десукции лесных культур на разных типах почв Северного Прикаспия // Почвоведение. 2000. № 11. С. 1318—1327.

Сапанов М.К. Экология лесных насаждений в аридных регионах. Тула: Гриф и Ко, 2003. 248 с.

Сапанов М.К. Причины усыхания культур дуба черешчатого на гидроморфных лугово-каштановых почвах Северного Прикаспия // Лесоведение. 2005. № 5. С. 10-17.

Сапанов М.К. Роль атмосферных осадков и грунтовых вод в жизнедеятельности лесных насаждений аридных регионов // Лесоведение. 2006. № 4. C.12-20.

Сапанов М.К. Возобновление и сохранность деревьев и кустарников в лесонасаждениях аридных регионов // Поволжский экологический журнал. 2010. № 2. С. 177-184.

Сапанов М.К. Экологические последствия потепления климата в Северном Прикаспии // Аридные экосистемы, 2018. Т. 24. № 1 (74). С. 18—28.

Сапанов М.К. Климатогенные факторы внезапного изменения хода роста дерева // Поволжский экологический журнал. 2019. № 2. С. 253—263.

Сапанов М.К., Сиземская М.Л. Климатогенные ограничения аридного лесовыращивания // Лесоведение. 2020. № 1. С. 46—54.

Сапанов М.К., Сиземская М.Л. Экологические особенности возобновления клена ясенелистного в аридных регионах России // Лесоведение. 2021. № 3. С. 325-334.

Сенкевич Н.Г. Естественное возобновление интродущентов в искусственных лесных экосистемах глинистой полупустыни Северного Прикаспия // Биологическое разнообразие лесных экосистем: Материалы совещания. М., 1995. С. 341—343.

Сенкевич Н.Г., Оловянникова И.Н. Интродукция древесных растений в полупустыне Северного Прикаспия. М.: ЦНИЭИуголь, 1996. 180 с.

Сиземская М.Л. Современная природно-антропогенная трансформация почв полупустыни Северного Прикаспия. М.: Товарищество научных изданий КМК, 2013. 276 с.

Сиземская М.Л., Елекешева М.М., Сапанов М.К. Формирование лесных биогеоценозов на нарушенных землях Северного Прикаспия // Поволжский экологический журнал. 2020. № 1. С. 86—98.

Сиземская М.Л., Сапанов М.К. Особенности видового состава и состояния интродуцентов в дендрариях

Джаныбекского стационара в полупустыне Северного Прикаспия // Растительные ресурсы. 2024. № 1.

Цельникер Ю.Л. Пути приспособления древесных растений к перенесению засухи в условиях степи // Физиология устойчивости растений. М.: АН СССР. 1960. С. 450–453.

Чистые культуры древесных пород на больших падинах Прикаспийской низменности. М.: АН СССР, 1961. 180 с.

Sizemskaya M.L., Sapanov M.K. Ecological assessment of the safety and biodiversity of woody introduced species in the semi-desert of the Northern Caspian lowland // IOP Conference Series: Earth and Environmental Science. Ensuring Sustainable Development in the Context of Agriculture, Energy, Ecology and Earth Science. 2023. V. 1212. № 1. 012025

The Plant list. Version 1.1. [Электронный ресурс] // September 2013. URL: http://www.theplantlist.org/ (дата обращения: 11.09.2023).

The Impact of Natural Climatic Factors on the State and Preservation of Introduced Species in Dzhanybek Research Station's Arboretum

M. K. Sapanov^{1, *}, M. L. Sizemskaya¹, N. A. Kotelnikov², M. M. Elekesheva³

¹Institute of Forest Science of the RAS,
Sovetskaya st. 21, Uspenskoe, Odintsovsky District, Moscow Oblast, 143030 Russian Federation

¹Soil Science faculty, Lomonosov Moscow State University,
Leninskie Gory 1 bldg. 12, Moscow, 119991 Russian Federation

³Zhangir Khan University, Zhangir khan st. 51, Uralsk, 090009 Republic of Kazakhstan

*E-mail: sapanovm@mail.ru

The paper presents the analysis results of a 70-year long experiment on climate testing of introduced tree and shrub species in the conditions of the bogharic lands of the Northern Caspian clay semi-deserts. The object of the research was the arboretum of the Dzhanybek Research Station, created in 1951 in a local mesorelief depression with meadow-chestnut soils and a fresh lens of groundwater at a depth of 5.5-7.0 m in order to identify a promising plant species for landscaping in the region. It was found that the strongest impact on the preservation of introduced plants, especially with a deep root system (oak, elm, poplar), is the secondary salinization of the fresh lens to 3-7 g/1 as it depletes, after which the trees can't use it and die from the lack of moisture. Analysing the dynamics of natural and climatic conditions revealed the presence of four moisture cycles, during which the condition and safety of introduced species change dramatically: in dry periods with a moisture coefficient below average (0.3 ± 0.13) , many species begin to wither. When droughts recur from year to year, mass climatogenic drying-out of introduced species is observed. In the arboretum, the living space of dying plants is occupied by the species of trees and shrubs (honeysuckle, maples, bird cherry) that are best adapted to these soil and hydrological conditions, forming stable multi-species, multi-age shrub thickets. During the existence of the arboretum, the collection of introduced species has decreased from 211 to 73 species, many of which have survived only as self-sown specimens. Analysis of long-term monitoring of their condition allows us to recommend the surviving species for landscaping, including through self-renewal.

Keywords: arid regions, intrazonal soils, arboretum, introduced species die-off, seed spreading, fresh water salinization, climate change.

Acknowledgements: The work has been carried out with the financial support from the Russian Scientific Foundation (N 23-24-00164).

REFERENCES

Bykov A.V., Olovyannikova I.N., Sapanov M.K., Rol' zoogennykh faktorov pri sozdanii kolochno-zapadinnogo landshafta v glinistoi polupustyne Zavolzh'ya (Role of zoogenic factors in creating kolok-rading landscape in clay semideserts of Zavolzhye), *Lesovedenie*, 1993, No. 6, pp. 27–33.

Bykov A.V., Znachenie drevesno-kustarnikovoi rastitel'nosti dlya pozvonochnykh zhivotnykh glinistoi polupustyni

Zavolzh'ya (The significance of arboreal vegetation for vertebrates of the clayey semi-desert of Trans-Volga region), *Aridnye ekosistemy*, 2010, Vol. 16, No. 45, pp. 90–97.

Chistye kul'tury drevesnykh porod na bol'shikh padinakh Prikaspiiskoi nizmennosti., (Pure cultures of tree species in large depressions of the Caspian lowland), Moscow: AN SSSR, 1961, 180 p.

Doskach A.G., *Prirodnoe raionirovanie Prikaspiiskoi polupustyni* (Natural zoning of Caspian semi-desert), Moscow: Nauka, 1979, 144 p.

Gordeeva T.K., Larin I.V., Estestvennaya rastitel'nost' polupustyni Prikaspiya kak kormovaya baza zhivotnovodstva (Natural vegetation of the Caspian semi-desert as a forage base for livestock farming), Moscow-Leningrad: Nauka, 1965, 160 p.

Ivanov N.N., Pokazatel' biologicheskoi effektivnosti klimata, *Izv. Vsesoyuznogo geograficheskogo obshchestva*, 1962, Vol. 94, No. 1, pp. 65–70.

Karandina S.N., Erpert S.D., *Klimaticheskoe ispytanie drevesnykh porod v Prikaspiiskoi polupustyne* (A climatic experiment on tree species in the Caspian desert), Moscow: Nauka, 1972, 127 p.

Kissis T.Y., Vodnyi rezhim temnotsvetnoi cherno-zemovidnoi pochvy bol'shoi padiny pod drevesnym nasazhdeniem (Water regime of dark chernozem-like soil of a big wooded gully), In: *Vodnyi rezhim pochv polupustyni* (Water regime of semi-desert soils), Moscow: Izd-vo AN SSSR, 1963, pp. 84–126.

Kolesnikov A.V., Vodnyi rezhim i vodnyi balans lugovo-kashtanovykh pochv pod kolochnymi lesnymi nasazhdeniyami v Severnom Prikaspii (Water regime and water balance of meadow-chestnut soils under separated forest stands in the northern Caspian Sea Region), Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopol'zovanie, 2019, No. 4 (44), pp. 48–58.

Kulakova N.Y., Cycle of biophilic elements in the litter of native and anthropogenic ecosystems in the Northern Caspian Semidesert *Eurasian Soil Science*, 2020, Vol. 53, No. 11, pp. 1561-1571.

Lindeman G.V., *Vzaimootnosheniya nasekomykh-ksilo-fagov i listvennykh derev'ev v zasushlivykh usloviyakh* (Relationships between xylophagous insects and deciduous trees in arid conditions), Moscow: Nauka, 1993, 206 p.

Olovyannikova I.N., Balans vlagi v chernozemovidnoi pochve pod nasazhdeniem vyaza melkolistnogo (Water balance in chernozem-like soil of Chinese elm stand), *Pochvovedenie*, 1977, No. 12, pp. 77–87.

Olovyannikova I.N., Lindeman G.V., O prichinakh nedolgovechnosti kul'tur vyaza melkolistnogo na yugo-vostoke Evropeiskoi Rossii v luchshikh usloviyakh rosta (On the reasons for the short life of small-leaved elm crops in the south-east of European Russia under the best growing conditions), *Lesovedenie*, 2000, No. 5, pp. 22–42.

Olovyannikova I.N., Vliyanie nasazhdenii vyaza prizemistogo na vodno-solevoi rezhim chernozemovidnykh pochv depressii Prikaspiiskoi polupustyni (The effect of Siberian elm forests on water-salt metabolism of chernozem-like soils of depressions in Caspian desert), *Lesovedenie*, 1996, No. 3, pp. 30–41.

Olovyannikova I.N., Vliyanie vyazovogo nasazhdeniya na gidrologicheskii rezhim pochv padin polupustyni Severnogo Prikaspiya (The influence of elm plantation on the hydrological regime of the soils of the hollows of the semi-desert of the Northern Caspian region), *Pochvovedenie*, 1991, No. 7, pp. 116–126.

Reimers N.F., *Prirodopol'zovanie* (Natural management), Moscow: Mysl', 1990, 637 p.

Rode A.A., Pol'skii M.N., Pochvy Dzhanybekskogo statsionara, ikh morfologicheskoe stroenie, mekhanicheskii i khimicheskii sostav (Soils of Dzhanybek station: morphology, structure, grain size and chemical composition), In: *Pochvy polupustyni Severo-Zapadnogo Prikaspiya i ikh melioratsiya. Po rabotam Dzhanybekskogo statsionara* (Melioration of soils of semi-desert in northwestern Caspian region: studies from Dzhanybek station), Moscow: Izd-vo AN SSSR, 1961, pp. 3-214.

Rode A.A., Vodnyi rezhim i balans tselinnykh pochv polupustynnogo kompleksa (Water regime and balance of virgin soils of the semi-desert complex), In: *Vodnyi rezhim pochv polupustyni* (Water regime of semi-desert soils), Moscow: AN SSSR, 1963, pp. 5–83.

Sapanov M.K., Ekologicheskie posledstviya potepleniya klimata v Severnom Prikaspii (Environmental Implications of Climate Warming for the Northern Caspian Region), *Aridnye ekosistemy*, 2018, Vol. 24, No. 1(74), pp. 18–28.

Sapanov M.K., *Ekologiya lesnykh nasazhdenii v aridnykh regionakh* (Ecology of wood plantings in arid regions), Tula: Grif i K, 2003, 248 p.

Sapanov M.K., Klimatogennye faktory vnezapnogo izmeneniya khoda rosta dereva (Climatic factors of a sudden change of tree growth), *Povolzhskii ekologicheskii zhurnal*, 2019, No. 2, pp. 253–263.

Sapanov M.K., Prichiny usykhaniya kul'tur duba chereshchatogo na gidromorfnykh lugovo-kashtanovykh pochvakh Severnogo Prikaspiya (Causes of drying up of *Quercus robur* plantations on hydromorphic meadowchestnut soils in the Northern Caspian Sea region), *Lesovedenie*, 2005, No. 5, pp. 10–17.

Sapanov M.K., Rol' atmosfernykh osadkov i gruntovykh vod v zhiznedeyatel'nosti lesnykh nasazhdenii aridnykh regionov (The role of atmospheric precipitation and groundwater in growth of forest plantations in arid regions), *Lesovedenie*, 2006, No. 4, pp. 12–20.

Sapanov M.K., Sizemskaya M.L., Ekologicheskie osobennosti vozobnovleniya klena yasenelistnogo v aridnykh regionakh Rossii (Ecological features of the ash-leaved maple regrowth in Russia's arid regions), *Lesovedenie*, 2021, No. 3, pp. 325–334.

Sapanov M.K., Sizemskaya M.L., Climatogenic restrictions of arid forestry, *Contemporary Problems of Ecology*, 2020, Vol. 13, No. 7, pp. 788–794.

Sapanov M.K., Vozobnovlenie i sokhrannost' derev'ev i kustarnikov v lesonasazhdeniyakh aridnykh regionov (Renewal and conservation of trees and shrubs in artificial forests in arid regions), *Povolzhskii ekologicheskii zhurnal*, 2010, No. 2, pp. 177–184.

Sapanov M.K., Water uptake by trees on different soils in the Northern Caspian region, *Eurasian Soil Science*, 2000, Vol. 33, No. 11, pp. 1157–1165.

Senkevich N.G., Estestvennoe vozobnovlenie introdutsentov v iskusstvennykh lesnykh ekosistemakh glinistoi

polupustyni Severnogo Prikaspiya (Natural regeneration of introduced species in artificial forest ecosystems of the clay semi-desert of the Northern Caspian region), *Biologicheskoe raznoobrazie lesnykh ekosistem* (Biological diversity of forest ecosystems), Proc. of Meeting, Moscow, 1995, pp. 341—343 Senkevich N.G., Olovyannikova I.N., *Introduktsiya drevesnykh rastenii v polupustyne Severnogo Prikaspiya* (Introduction of trees in semi-desert of northern Caspian region), Moscow: Izd-vo ILAN, 1996, 179 p.

Sizemskaya M.L., Elekesheva M.M., Sapanov M.K., Formirovanie lesnykh biogeotsenozov na narushennykh zemlyakh Severnogo Prikaspiya (Formation of forest biogeocenoses on disturbed lands of the Northern Caspian Region), *Povolzhskii ekologicheskii zhurnal*, 2020, No. 1, pp. 86–98.

Sizemskaya M.L., Sapanov M.K., Osobennosti vidovogo sostava i sostoyaniya introdutsentov v dendrariyakh Dzhanybekskogo statsionara v polupustyne Severnogo Prikaspiya (Features of the introduced species composition and state in the arboreta of Dzhanybek research station in the Northern Pre-Caspian semi-desert), *Rastitel'nye resursy*, 2024, No. 1.

Sizemskaya M.L., Sovremennaya prirodno-antropogennaya transformatsiya pochv polupustyni Severnogo Prikaspiya (Recent soil alterations in northern Caspian region under natural and human impacts), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2013, 276 p.

Sizemskaya M.L., Sapanov M.K., Ecological assessment of the safety and biodiversity of woody introduced species in the semi-desert of the Northern Caspian lowland, *IOP Conference Series: Earth and Environmental Science*, Ensuring Sustainable Development in the Context of Agriculture, Energy, Ecology and Earth Science, 2023, Vol. 1212, No. 1. Article 012025.

The Plant list, available at: http://www.theplantlist.org/(September 11, 2023).

Tsel'niker Y.L., Puti prisposobleniya drevesnykh rastenii k pereneseniyu zasukhi v usloviyakh stepi (Ways of adaptation of woody plants to drought tolerance in steppe conditions), In: *Fiziologiya ustoichivosti rastenii* (Physiology of plant resistance), Moscow: AN SSSR, 1960, pp. 450–453.

Vinogradova Y.K., Maiorov S.R., Khorun L.V., *Chernaya kniga flory Srednei Rossii: chuzherodnye vidy rastenii v ekosistemakh Srednei Rossii* (The black book of flora of Central Russia: alien plant species in ecosystems of Central Russia), Moscow: GEOS, 2010, 512 p.

Vorob'eva L.A., *Khimicheskii analiz pochv* (Chemical analysis of soils), Moscow: Izd-vo MGU, 1998, 271 p.