Новый подход к синтезу ультратонких гексагональных наночастиц нитрида бора с помощью двухэтапной термической обработки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработан метод получения наночастиц гексагонального нитрида бора (h-BN) размером 2–10 нм со степенью кристалличности до 99%. Метод основан на двухступенчатой термической обработке при температурах 600 и 1000°C с использованием борной кислоты, мочевины, азота и водорода. Методами рентгенофазового анализа, просвечивающей электронной микроскопии высокого разрешения, электронной дифракции на выбранной области и анализа карт электронной плотности подтверждены гексагональная структура h-BN с межплоскостным расстоянием 3.3 Å, узкое распределение размеров и равномерное распределение элементов в материале. Предложенный подход исключает использование токсичного аммиака, энергоэффективен и подходит для промышленного масштабирования. Полученные наночастицы могут применяться в трибологических покрытиях и смазочных материалах.

Об авторах

О. Э. Абдурахмонов

Ташкентский химико-технологический институт

Ташкент, Узбекистан

М. Х. Арипова

Ташкентский химико-технологический институт

Ташкент, Узбекистан

Ш. Э. Абдурахмонов

Ташкентский химико-технологический институт; Алмалыкский филиал Национального исследовательского технологического университета “МИСИС”

Ташкент, Узбекистан; Алмалык, Узбекистан

Б. Р. Рузибаев

Ташкентский химико-технологический институт

Ташкент, Узбекистан

Э. И. Рузматов

Ташкентский химико-технологический институт

Ташкент, Узбекистан

М. К. Курбанов

Ургенчский государственный университет

Ургенч, Узбекистан

Д. С. Саидов

Ургенчский технологический университет РАНЧ

Ургенч, Узбекистан

Т. И. Жураев

Международный университет КИМЕ в Ташкенте

Ташкент, Узбекистан

У. Б. Шаропов

Физико-технический институт АН РУз

Email: utkirstar@gmail.com
Ташкент, Узбекистан

А. С. Комолов

Санкт-Петербургский государственный университет

Санкт-Петербург, Россия

И. А. Пронин

Пензенский государственный университет

Пенза, Россия

Список литературы

  1. Oku T. Synthesis, Structures and Properties of Boron Nitride Nanoparticles. Cham: Springer International Publishing, 2015. 232 р. https://doi.org/10.1007/978-3-319-13188-7_9-1
  2. Óvári L., Farkas A.P., Palotás K. et al. // Surf. Sci. Rep. 2024. V. 79. P. 100637. https://doi.org/10.1016/J.SURFREP.2024.100637
  3. Naclerio A.E., Kidambi P.R. et al. // Adv. Mater. 2023. V. 35. P. 2207374. https://doi.org/10.1002/ADMA.202207374
  4. Wang J., Ma F., Liang W. et al. // Nanophotonics. 2017. V. 6. P. 976. https://doi.org/10.1515/nanoph-2017-0015
  5. Narayan J., Bhaumik A. // APL Mater. 2016. V. 4. P. 020701. https://doi.org/10.1063/1.4941095/120597
  6. Song J., Duan S., Chen X. et al. // Chin. Phys. Lett. 2020. V. 37. P. 076203. https://doi.org/10.1088/0256-307X/37/7/076203
  7. Li W., Luo T., Zhu C. et al. // Ind. Eng. Chem. Res. 2023. V. 62. P. 444. https://doi.org/10.1021/ACS.IECR.2C03639
  8. Anafcheh M., Ghafouri R. // J. Clust. Sci. 2014. V. 25. P. 1173. https://doi.org/10.1007/S10876-014-0698-0
  9. Afzal O., Shafi W.K., Charoo M.S. // Energy Sources. A. 2020. V. 47. P. 4128. https://doi.org/10.1080/15567036.2020.1864516
  10. Oku T. // B-C-N Nanotubes and Related Nanostructures. NY: Springer, 2009. P. 149. https://doi.org/10.1007/978-1-4419-0086-9_6
  11. Wang J., Ma F., Liang W. et al. // Mater. Today Phys. 2017. V. 2. P. 34. https://doi.org/10.1016/J.MTPHYS.2017.07.001
  12. Naresh Muthu R., Rajashabala S., Kannan R. et al. // Renew. Energy. 2016. V. 85. P. 394. https://doi.org/10.1016/J.RENENE.2015.06.056
  13. Charoo M.S., Wani M.F. // Lubr. Sci. 2017. V. 29. P. 254. https://doi.org/10.1002/LS.1366
  14. Kim T.H., Ko E.H., Nam J. et al. // J. Nanosci. Nanotechnol. 2017. V. 17. P. 9223. https://doi.org/10.1166/JNN.2017.13865
  15. Kayani Z.N., Bashir Z., Mohsin M. et al. // Optik (Stuttg.). 2021. V. 243. P. 167502. https://doi.org/10.1016/j.ijleo.2021.167502
  16. Queiroz S.M., Medeiros F.S., Silva G.G. et al. // Nanotechnol. 2022. V. 33. P. 035714. https://doi.org/10.1088/1361-6528/ac20ff
  17. Shaikh M., Ravi P., Roselina N.N. et al. // J. Eng. Tribol. 2024. V. 238. P. 1233. https://doi.org/101177/13506501241257560.
  18. Bae D.S., Kim C., Lee H. et al // Nano Converg. 2022. V. 9. P. 10. https://doi.org/10.1186/S40580-022-00312-Y/FIGURES/7
  19. Yuan Y., Weber J., Li J. et al. // Nat. Commun. 2024. V. 15. P. 12. https://doi.org/10.1038/s41467-024-48485-w
  20. Lin J., Tay R.Y., Li H. et al. // Nanoscale. 2018. V. 10. P. 16251. https://doi.org/10.1039/C8NR03984D
  21. Sutorius A., Weißing R., Rindtorff Pèrez C. et al. // Nanoscale. 2024. P. 16. V. 15792. https://doi.org/10.1039/D4NR02624A
  22. Prus A., Owarzany R., Jezierski D. et al. // Dalton Trans. 2024. V. 53. P. 8140. https://doi.org/10.1039/D4DT00682H
  23. Ma R., Bando Y., Sato T. // Chem. Phys. Lett. 2001. V. 337. P. 64. https://doi.org/10.1016/S0009-2614(01)00194-4
  24. Wagare D.S., Shirsath S.E., Shaikh M. et al. // Environ. Chem. Lett. 2021. V. 19. P. 3282. https://doi.org/10.1007/S10311-020-01176-6
  25. Kostoglou N., Polychronopoulou K., Rebholz C. // Vacuum. 2015. V. 112. P. 45. https://doi.org/10.1016/J.VACUUM.2014.11.009
  26. KInacI A., Haskins J.B., Sevik C. et al. // Phys. Rev. B. 2012. V. 86. P. 115410. https://doi.org/10.1103/PHYSREVB.86.115410/FIGURES/5/THUMBNAIL
  27. Liu F.H., Pang M. // Mater Today Commun. 2024. V. 39. P. 108601. https://doi.org/10.1016/J.MTCOMM.2024.108601
  28. Liu H., Yan M., Jing W. et al. // Diam. Relat. Mater. 2024. V. 148. P. 111410. https://doi.org/10.1016/J.DIAMOND.2024.111410
  29. Yang Y., Peng Y., Saleem M.F. et al. // Materials. 2022. V. 15. P. 4396. https://doi.org/10.3390/MA15134396
  30. Abdurakhmonov O., Sharopov U., Abdurakhmonov S. et al. // J. Magn. Magn. Mater. 2024. V. 600. P. 172130. https://doi.org/10.1016/J.JMMM.2024.172130
  31. Abdurakhmonov O.E., Sharopov U.B., Abdurakhmonov Sh.E. et al. // J. Magn. Magn. Mater. 2024. V. 589. P. 171562. https://doi.org/10.1016/j.jmmm.2023.171562
  32. Sharopov U., Samiev K., To’raev A. et al. // Vacuum. 2024. V. 227. P. 113395. https://doi.org/10.1016/J.VACUUM.2024.113395
  33. Абдурахмонов О.Э., Алисултанов М.Э., Вертаева Д.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1032. https://doi.org/10.31857/S0044457X22070029
  34. Llenas M., Cuenca L., Santos C. et al. // Biomedicines. 2022. V. 10. P. 3238. https://doi.org/10.3390/BIOMEDICINES10123238/S1
  35. Bandarenka H., Burko A., Girel K. et al. // Crystals. 2023. V. 13. P. 749. https://doi.org/10.3390/CRYST13050749
  36. Komilov A., Abdulkhaev O., Nasrullayev Y. et al. // Appl. Sol. Energy. 2024. V. 60. P. 188. https://doi.org/10.3103/S0003701X24602059
  37. Revabhai P.M., Singhal R.K., Basu H. et al. // J. Nanostruct. Chem. 2022. V. 13. P. 41. https://doi.org/10.1007/S40097-022-00490-5
  38. Abdurakhmonov O.E., Alisultanov M.E., Abdurakhmonov Sh.E. et al. // Nanobiotech. Rep. 2023. V. 18. P. 232. https://doi.org/10.1134/S2635167623700064
  39. Tan Y., Yan X., Tang C. et al. // J. Mater. Sci.: Mater. Electron. 2021.V. 32. P. 23325. https://doi.org/10.1007/s10854-021-06817-2
  40. Paine R., Narula C. // Chem. Rev. 1990. V. 90. № 1. P. 73. https://doi.org/10.1021/cr00099a004
  41. McLean B., Page A.J. Boron Nitride Nanomaterials: Properties, Fabrication, and Applications. Jenny Stanford Publishing. 2023. 226 р. https://doi.org/10.1201/9781003314486

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».