Твердые растворы CaMo(1–x)WxO4: моделирование свойств и локального окружения ионов
- Авторы: Дудникова В.Б.1, Еремин Н.Н.1
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 70, № 3 (2025)
- Страницы: 391-398
- Раздел: КРИСТАЛЛОХИМИЯ
- URL: https://journals.rcsi.science/0023-4761/article/view/293759
- DOI: https://doi.org/10.31857/S0023476125030052
- EDN: https://elibrary.ru/BEBZVD
- ID: 293759
Цитировать
Аннотация
Проведено моделирование твердых растворов CaMo(1–x)WxO4 методом межатомных потенциалов. Определены зависимости параметров и объема элементарной ячейки, плотности, модуля объемной упругости, энтальпии, колебательной энтропии и теплоемкости от состава. Построены температурные зависимости теплоемкости и колебательной энтропии. Исследована локальная структура твердых растворов. Установлено изменение координационных полиэдров СаО8, тетраэдров МоО4 и WO4 с изменением концентрации твердого раствора. Показано, что в промежуточных составах наблюдается дополнительное искажение всех полиэдров, что может быть причиной улучшения спектральных характеристик смешанных составов.
Полный текст

Об авторах
В. Б. Дудникова
Московский государственный университет им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: VDudnikova@hotmail.com
Россия, Москва
Н. Н. Еремин
Московский государственный университет им. М.В. Ломоносова
Email: VDudnikova@hotmail.com
Россия, Москва
Список литературы
- Hu Y., Zhuang W., Ye H. et al. // J. Alloys Compd. 2005. V. 390. P. 226. https://doi.org/10.1016/j.jallcom.2004.07.063
- Dixit P., Chauhan V., Kumar P., Pandey P.C. // J. Lumin. 2020. V. 223. 117240. https://doi.org/10.1016/j.jlumin.2020.117240
- Johnson L.F. // J. Appl. Phys. 1963. V. 34 (4). P. 897. https://doi.org/10.1063/1.1729557
- Zhuang R.Z., Zhang L.Z., Lin Z.B., Wang G.F. // Mat. Res. Innov. 2008. V. 12. P. 62. https://doi.org/10.1179/143307508X304237
- Шилова Г.В., Сироткин А.А., Зверев П.Г. // Квантовая электроника. 2019. Т. 49. С. 570.
- Campos A.B., Simões A.Z., Longo E. et al. // Appl. Phys. Let. 2007. V. 91. 051923. https://doi.org/10.1063/1.2766856
- Mikhailik V.B., Henry S., Kraus H., Solskii I. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 583. P. 350. https://doi.org/10.1016/j.nima.2007.09.020
- Lee S.J., Choi J.H., Danevich F.A. et al. // Astropart. Phys. 2011. V. 34. P. 732. https://doi.org/10.1016/j.astropartphys.2011.01.004
- Angloher G., Bucci C., Christ P. et al. // Astropart. Phys. 2005. V. 23. P. 325. https://doi.org/10.1016/j.astropartphys.2005.01.006
- Gao H., Wang S., Wang Y. et al. // Colloids Surf. A. Physicochem. Eng. Asp. 2022. V. 642. 128642. https://doi.org/10.1016/j.colsurfa.2022.128642
- Han J., McBean C., Wang L. et al. // J. Phys. Chem. C. 2015. V. 119. P 3826. http://dx.doi.org/10.1021/jp512490d
- Баковец В.В., Золотова Е.С., Антонова О.В. и др. // ЖТФ. 2016. T. 86. Вып. 12. С. 111. https://doi.org/10.21883/jtf.2016.12.43924.1511
- Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. T. 64. Вып. 11. C. 1741. https://doi.org/10.21883/FTT.2022.11.53328.413
- Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // ФТТ. 2019. T. 61. Вып. 4. C. 678. https://doi.org/10.21883/FTT.2019.04.47412.311
- Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // Кристаллография. 2023. Т. 68. № 4. С. 536 https://doi.org/10.31857/S0023476122600550
- Dudnikova V.B., Zharikov E.V., Eremin N.N. // Mater. Today Commun. 2020. V. 23. 101180. https://doi.org/10.1016/j.mtcomm.2020.101180
- Gale J.D. // Z. Kristallogr. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070
- Dick B.G., Overhauser A.W. // Phys. Rev. 1958. V. 112. P. 90. https://doi.org/10.1103/PhysRev.112.90
- Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. Т. 64. С. 1452. https://doi.org/10.21883/FTT.2022.10.53089.354
- Hazen R.M., Finger L.W., Mariathasan J.W.E. // J. Phys. Chem. Solids. 1985. V. 46. № 2. P. 253. https://doi.org/10.1016/0022-3697(85)90039-3
- Александров В.Б., Горбатый Л.В., Илюхин В.В. // Кристаллография 1968. T. 13. C. 512
- Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. M.: ГЕОС, 2012. 428 с.
- Ferna´ndez-Gonza´lez A., Andara A., Prieto M. // Cryst. Growth Des. 2007. V. 7. № 3. P. 545. https://doi.org/10.1021/cg0606646
- Senyshyn A., Kraus H., Mikhailik V.B. et al. // Phys. Rev. B. 2006. V. 73. 014104. https://doi.org/10.1103/PhysRevB.73.014104
- Weller W.W., King E.G. // U. S. Dept. of the Interior, Bureau of Mines. 1963. 6147.
- Morishita M., Kinoshita Y., Houshiyama H. et al. // J. Chem. Thermodynam. 2017. V. 114. P. 30. https://doi.org/10.1016/j.jct.2017.05.021
- King E.G., Weller W.W. // U. S. Bur. Mines Rept. Invest. 1961. 5791.
- Lyon W.G., Westrum E.F. // J. Chem. Phys. 1968. V. 49. Р. 3374. https://doi.org/10.1063/1.1670609
- Senyshyn A., Kraus H., Mikhailik V.B., Yakovyna V. // Phys. Rev. B. 2004. V. 70. 214306. https://doi.org/10.1103/PhysRevB.70.214306
Дополнительные файлы
