Динамика возникновения новых фаз в кремнии при фемтосекундной лазерной абляции
- Авторы: Мареев Е.И.1, Хмеленин Д.Н.1, Потемкин Ф.В.2
-
Учреждения:
- Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”
- Московский государственный университет им. М.В. Ломоносов
- Выпуск: Том 70, № 1 (2025)
- Страницы: 18-27
- Раздел: ДИНАМИКА РЕШЕТКИ И ФАЗОВЫЕ ПЕРЕХОДЫ
- URL: https://journals.rcsi.science/0023-4761/article/view/286224
- DOI: https://doi.org/10.31857/S0023476125010039
- EDN: https://elibrary.ru/IUBAXZ
- ID: 286224
Цитировать
Аннотация
Экспериментально методами микроспектроскопии комбинационного рассеяния света, просвечивающей электронной микроскопии и с помощью численного моделирования продемонстрировано, что при воздействии интенсивного (1013–1014 Вт/см2) фемтосекундного (~100 фс) лазерного импульса на кремниевую подложку с ориентацией (111) на поверхности и в объеме формируются новые полиморфные фазы Si-III и Si-XII, локализованные в дефектах решетки, а также на периферии абляционного кратера. Такая локализация фаз вызвана многостадийностью лазерно-индуцированных фазовых переходов в кремнии. Они инициируются ударной волной, в результате при субнаносекундных временах запускается каскад преобразований: Si-I → Si-II → Si-III/Si-XII. Фазовый переход Si-I → Si-II происходит на переднем фронте ударной волны, в то время как на ее заднем фронте возникает поле динамических напряжений в материале, в котором становится возможен фазовый переход Si-II → Si-III/Si-XII. На субмикросекундных временных масштабах большая часть новых фаз исчезает при релаксации материала в исходное состояние.
Полный текст

Об авторах
Е. И. Мареев
Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”
Автор, ответственный за переписку.
Email: mareev.evgeniy@physics.msu.ru
Россия, Москва
Д. Н. Хмеленин
Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”
Email: mareev.evgeniy@physics.msu.ru
Россия, Москва
Ф. В. Потемкин
Московский государственный университет им. М.В. Ломоносов
Email: potemkin@physics.msu.ru
Faculty of Physics
Россия, МоскваСписок литературы
- Mogni G., Higginbotham A., Gaál-Nagy K., Park N., Wark J.S. // Phys. Rev. B. 2014. V. 89. P. 064104. https://doi.org/10.1103/PhysRevB.89.064104
- Wippermann S., He Y., Vörös M., Galli G. // Appl. Phys. Rev. 2016. V. 3. P. 040807. https://doi.org/10.1063/1.4961724
- Hanfland M., Schwarz U., Syassen K., Takemura K. // Phys. Rev. Lett. 1999. V. 82. P. 1197. https://doi.org/10.1103/PhysRevLett.82.1197
- McBride E.E., Krygier A., Ehnes A. et al. // Nat. Phys. 2019. V. 15. P. 89. https://doi.org/10.1038/s41567-018-0290-x
- Мареев Е.И., Румянцев Б.В., Потемкин Ф.В. // Письма в ЖЭТФ. 2020. Т. 112. С. 780. https://doi.org/10.31857/s1234567820230111
- Budnitzki M., Kuna M. // J. Mechan. Phys. Solids. 2016. V. 95. P. 64. https://doi.org/10.1016/j.jmps.2016.03.017
- Chen H., Levitas V.I., Popov D., Velisavljevic N. // Nat. Commun. 2022. V. 13. P. 982. https://doi.org/10.1038/s41467-022-28604-1
- Daisenberger D., Wilson M., McMillan P.F. et al. // Phys. Rev. B. 2007. V 75. P. 224118. https://doi.org/10.1103/PhysRevB.75.224118
- Domnich V., Gogotsi Y. // Rev. Adv. Mater. Sci. 2002. V. 3. P. 1. https://www.ipme.ru/e-journals/RAMS/no_1302/domnich/domnich.pdf
- Zeng Z., Zeng Q., Mao W.L., Qu S. // J. Appl. Phys. 2014. V. 115. P. 103514. https://doi.org/10.1063/1.4868156
- Ovsyuk N.N., Lyapin S.G. // Appl. Phys. Lett. 2020. V. 116. P. 062103. https://doi.org/10.1063/1.5145246
- Sundaram S.K., Mazur E. // Nat. Mater. 2002. V. 1. P. 217. https://doi.org/10.1038/nmat767
- Vailionis A., Gamaly E.G., Mizeikis V. et al. // Nat. Commun. 2011. V. 2. P. 445. https://doi.org/10.1038/ncomms1449
- Mareev E.I., Lvov K.V., Rumiantsev B.V. et al. // Laser Phys. Lett. 2019. V. 17. P. 015402. https://doi.org/10.1088/1612-202X/ab5d23
- Butkus S. // J. Laser Micro/Nanoengineering. 2014. V 9. P. 213. https://doi.org/10.2961/jlmn.2014.03.0006
- Gorman M.G., Briggs R., McBride E.E. et al. // Phys. Rev. Lett. 2015. V. 115. P. 095701. https://doi.org/10.1103/PhysRevLett.115.095701
- Brown S.B., Gleason A.E., Galtier E. et al. // Sci. Adv. 2019. V. 5. P. eaau8044. https://doi.org/10.1126/sciadv.aau8044
- Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
- Ковальчук М.В., Борисов М.М., Гарматина А.А. и др. // Кристаллография. 2022. Т. 67. № 5. С. 771. https://doi.org/10.31857/s0023476122050083
- Moser R., Domke M., Winter J. et al. // Adv. Opt. Technol. 2018. V. 7. P. 255. https://doi.org/10.1515/aot-2018-0013
- Mareev E., Obydennov N., Potemkin F. // Photonics. 2023. V. 10. P. 380. https://doi.org/10.3390/photonics10040380
- Mareev E.I., Potemkin F.V. // Int. J. Mol. Sci. 2022. V. 23. P. 2115. https://doi.org/10.3390/ijms23042115
- Норман Г.Э., Стариков С.В., Стегайлов В.В. // ЖЭТФ. 2012. Т. 141. С. 910. https://doi.org/10.1134/S1063776112040115
- Greathouse J.A. Two-Temperature (TTM) Molecular Dynamics. Standia National LAborotory, NNSA.
- Mareev E., Pushkin A., Migal E. et al. // Sci. Rep. 2022. V. 12. P. 7517. https://doi.org/10.1038/s41598-022-11501-4
- Yang J., Zhang D., Wei J. et al. // Micromachines. 2022. V. 13. P. 1119. https://doi.org/10.3390/mi13071119
- Taylor L.L., Scott R.E., Qiao J. // Opt. Mater. Express. 2018. V. 8. P. 648. https://doi.org/10.1364/ome.8.000648
- Liu J., Wu M., Sun Z. et al. // Appl. Surf. Sci. 2024. V. 661. P. 160022. https://doi.org/10.1016/j.apsusc.2024.160022
- An H., Wang J., Fang F., Jiang J. // Opt. Laser Technol. 2024. V. 171. P. 110427. https://doi.org/10.1016/j.optlastec.2023.110427
- Plimpton S. // J. Comput. Phys. 1995. V. 117. P. 1. https://doi.org/10.1006/jcph.1995.1039
- Pisarev V.V., Starikov S.V. // J. Phys.: Condens. Matter. 2014. V. 26. № 47. P. 475401. https://doi.org/10.1088/0953-8984/26/47/475401
- Norman G.E., Starikov S.V., Stegailov V.V. et al. // Contrib. Plasma Phys. 2013. V. 2. P. 129. https://doi.org/10.1002/ctpp.201310025
- Stukowski A. // Model. Simul. Mat. Sci. Eng. 2010. V. 18. № 1. P. 015012. https://doi.org/10.1088/0965-0393/18/1/015012
- Coleman S.P., Spearot D.E., Capolungo L. // Model. Simul. Mat. Sci. Eng. 2013. V. 21. P. 055020. https://doi.org/10.1088/0965-0393/21/5/055020
- Пашаев Э.М. Корчуганов В.Н., Субботин И.А. и др. // Кристаллография. 2021. Т. 66. С. 877. https://doi.org/10.31857/S0023476122050083
- Gogotsi Y., Baek C., Kirscht F. // Semicond. Sci. Technol. 1999. V. 10. P. 936. https://doi.org/10.1088/0268-1242/14/10/310
- Li H., Yu X., Zhu X. et al. // AIP Adv. 2021. V. 4. P. 045103. https://doi.org/10.1063/5.0034896
- Bradby J.E., Williams J.S., Wong-Leung J. et al. // Appl. Phys. Lett. 2000. V. 23. P. 3749. https://doi.org/10.1063/1.1332110
- Ikoma Y., Yamasaki T., Shimizu T. et al. // Mater. Characterization. 2020. V. 169. P. 110590. https://doi.org/10.1016/j.matchar.2020.110590
- Xuan Y., Tan L., Cheng B. et al. // J. Phys. Chem. C. 2020. V. 124. P. 27089. https://doi.org/10.1021/acs.jpcc.0c07686
- Cheng C. // Phys. Rev. B. 2003. V. 67. P. 134109. https://doi.org/10.1103/PhysRevB.67.134109
- Anzellini S., Wharmby M.T., Miozzi F. et al. // Sci. Rep. 2019. V. 9. P. 15537. https://doi.org/10.1038/s41598-019-51931-1
- Yin M.T. // Phys. Rev. B. 1984. V. 30. P. 1773. https://doi.org/10.1103/PhysRevB.30.1773
- Piltz R.O., MacLean J.R., Clark S.J. et al. // Phys. Rev. B. 1995. V. 52. P. 4072. https://doi.org/10.1103/PhysRevB.52.4072
Дополнительные файлы
