Галогенные связи в производных 2,5-дииод-1,4-диметилбензола

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Описан синтез 1,4-ди(бромметил)-2,5-дииод-бензола (1), диацетата 2,5-дииод-1,4-ди(гидроксиметил)бензола (2) и дииодида 1,1´-[(2,5-дийодо-1,4-фенилен)бис(метилен)]дипиридиния (3), а также приведены их кристаллографические данные. Все три кристаллические структуры отличаются стопочной упаковкой плоских молекул и наличием галогенных связей I···Br, I···O и I···I соответственно. Число галогенных связей максимально в соединении 1: по две связи I···Br на каждый атом галогена. Соединения 2 и 3 содержат по одной галогенной связи на атом галогена, однако они существенно короче, чем в соединении 1. Все кристаллы исследованы методами ИК-спектроскопии и синхронного термического анализа. Соединение 1, не имеющее ионных или водородных связей, плавится при более высокой температуре, чем ионное соединение 3 (218 и 200°C соответственно), благодаря наличию большого количества межмолекулярных галогенных связей. Соединение 2 плавится при более низкой температуре (151°C), что характерно для сложных эфиров.

Об авторах

К. Раджакумар

Южно-Уральский государственный университет

Email: zherebtcovda@susu.ru
Россия, Челябинск

Д. А. Жеребцов

Южно-Уральский государственный университет

Автор, ответственный за переписку.
Email: zherebtcovda@susu.ru
Россия, Челябинск

С. А. Найферт

Южно-Уральский государственный университет

Email: zherebtcovda@susu.ru
Россия, Челябинск

А. А. Осипов

Южно-Уральский государственный университет

Email: aaosipov@susu.ru
Россия, Челябинск

С. А. Адонин

Южно-Уральский государственный университет; Иркутский институт химии им. А.Е. Фаворского СО РАН

Email: zherebtcovda@susu.ru
Россия, Челябинск; Иркутск

Д. В. Спиридонова

Санкт-Петербургский государственный университет

Email: zherebtcovda@susu.ru

Научный парк

Россия, Санкт-Петербург

Список литературы

  1. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
  2. Mikherdov A.S., Novikov A.S., Boyarskiy V.P et al. // Nature Commun. 2020. V. 11. 2921. https://doi.org/10.1038/s41467-020-16748-x
  3. Matveychuk Y.V., Ilkaeva M.V., Vershinina E.A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.31857/S0044457X21100202
  4. Yushina I., Tarasova N., Kim D. et al. // Crystals. 2019. V. 9. P. 506. https://doi.org/10.3390/cryst9100506
  5. Albright E., Cann J., Decken A. et al. // Cryst. Eng. Commun. 2017. V. 19. P. 1024. https://doi.org/10.1039/C6CE02339H
  6. Baykov S.V., Filimonov S.I., Rozhkov A.V. et al. // Cryst. Growth Des. 2020. V. 20. P. 995.
  7. Albietz P.J., Cleary B.P., Paw W. et al. // J. Am. Chem. Soc. 2001. V. 123. P. 12091. https://doi.org/10.1021/ja016127l
  8. Albietz P.J., Cleary B.P., Paw W. et al. // Inorg. Chem. 2002. V. 41. P. 2095. https://doi.org/10.1021/ic025506s
  9. Rajakumar K., Sharutin V.V., Adonin S.A. et al. // J. Struct. Chem. 2022. V. 63. P. 620. https://doi.org/10.1134/S0022476622040138
  10. Grunder S., Huber R., Horhoiu V. et al. // J. Org. Chem. 2007. V. 72. P. 8337. https://doi.org/10.1021/jo7013998
  11. Gaefke G., Enkelmann V., Höger S. // Synthesis. 2006. V. 17. P. 2971. https://doi.org/10.1055/s-2006-942534
  12. Costa A.L., Ferreira L.F., Prata J.V. // J. Polym. Sci. A. Polym. Chem. 2008. V. 46. P. 6477. https://doi.org/10.1002/pola.22957
  13. Hodecker M., Kozhemyakin Y., Weigold S. et al. // Chem. Eur. J. 2020. V. 26. P. 16990. https://doi.org/10.1002/chem.202002552.
  14. Jordan R.S., Wang Y., McCurdy R.D. et al. // Chem. 2016. V. 1. P. 78. https://doi.org/10.1016/j.chempr.2016.06.010
  15. Fan Q.-L., Lu S., Lai Y.-H. et al. // Macromolecules. 2003. V. 36. P. 6976. https://doi.org/10.1021/ma030093f
  16. Nishinaga S., Sawanaka Y., Toyama R. et al. // Chem. Lett. 2018. V. 47. P. 1409. https://doi.org/10.1246/cl.180644
  17. Horváth D.V., Holczbauer T., Bereczki L. et al. // CrystEngComm. 2018. V. 13. https://doi.org/10.1039/c8ce00041g
  18. CrysAlisPro 1.171.41.103a (Rigaku Oxford Diffraction, 2021).
  19. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  20. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  21. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  22. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806. https://doi.org/10.1021/jp8111556

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах