Microfluidic-assisted synthesis of hybrid calcium carbonate/silver microparticles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The development of advanced methods for the synthesis of nano- and microparticles for biomedical applications is of considerable interest. A method for the synthesis of submicron silver-shelled calcium carbonate particles using a microfluidic chip designed to provide control over particle formation is proposed. Precise control of reaction parameters enables the formation of silver shell and calcium carbonate particles in a controlled manner. The distribution of pores in the hybrid particles was analyzed using small-angle X-ray scattering, which provided insight into the complex structure of the pores. The results provide information on particle morphology and may facilitate the development of new calcium carbonate-based materials for various applications.

Sobre autores

А. Ermakov

Institute of Molecular Theranostics, First Moscow State Medical University (Sechenov University)

Email: trushina.d@mail.ru
Rússia, Moscow

S. Chapek

Southern Federal University

Email: trushina.d@mail.ru

The Smart Materials Research Institute

Rússia, Rostov-on-Don

Е. Lengert

Institute of Molecular Theranostics, First Moscow State Medical University (Sechenov University)

Email: trushina.d@mail.ru
Rússia, Moscow

P. Konarev

NRC “Kurchatov Institute”

Email: trushina.d@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow

V. Volkov

NRC “Kurchatov Institute”

Email: trushina.d@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow

M. Soldatov

Southern Federal University

Email: trushina.d@mail.ru

The Smart Materials Research Institute

Rússia, Rostov-on-Don

D. Trushina

Institute of Molecular Theranostics, First Moscow State Medical University (Sechenov University); NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: trushina.d@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow; Moscow

Bibliografia

  1. Yang D., Gao K., Bai Y. et al. // Int. J. Biol. Macromol. 2021. V. 182. P. 639. https://doi.org/10.1016/j.ijbiomac.2021.04.057
  2. Verkhovskii R.A., Ivanov A.N., Lengert E. et al. // Pharmaceutics. 2023. V. 15 (5). P. 1566. https://doi.org/10.3390/pharmaceutics15051566
  3. Song W., Zhang Y., Yu D.-G. et al. // Biomacromolecules. 2021. V. 22 (2). P. 732. https://doi.org/10.1021/acs.biomac.0c01520
  4. Lengert E.V., Trushina D.B., Soldatov M., Ermakov A.V. // Pharmaceutics. 2022. V. 14 (1). P. 139. https://doi.org/10.3390/pharmaceutics14010139
  5. Huang Y., Cao L., Parakhonskiy B.V., Skirtach A.G. // Pharmaceutics. 2022. V. 14 (5). P. 909. https://doi.org/10.3390/pharmaceutics14050909
  6. Trucillo P. // Processes. 2021. V. 9 (3). P. 470. https://doi.org/10.3390/pr9030470
  7. Zhao X., Wu D., Ma X. et al. // Biomed. Pharmacother. 2020. V. 128. P. 110237. https://doi.org/10.1016/j.biopha.2020.110237
  8. Finbloom J.A., Sousa F., Stevens M.M., Desai T.A. // Adv. Drug Deliv. Rev. 2020. V. 167. P. 89. https://doi.org/10.1016/j.addr.2020.06.007
  9. Turiel-Fernández D., Gutiérrez-Romero L., Corte-Rodriguez M. et al. // Anal. Chim. Acta. 2021. V. 1159. P. 338356. https://doi.org/10.1016/j.aca.2021.338356
  10. Tu J., Yu A.C.H. // BME Front. 2022. V. 2022. https://doi.org/10.34133/2022/9807347
  11. Novoselova M.V., German S.V., Abakumova T.O. et al. // Colloids Surf. B. 2021. V. 200. P. 111576. https://doi.org/10.1016/j.colsurfb.2021.111576
  12. Kung C.-T., Gao H., Lee C.-Y. et al. // Chem. Eng. J. 2020. V. 399. P. 125748. https://doi.org/10.1016/j.cej.2020.125748
  13. Ma Z., Li B., Peng J., Gao D. // Pharmaceutics. 2022. V. 14 (2). P. 434. https://doi.org/10.3390/pharmaceutics14020434
  14. Liu Y., Yang G., Hui Y. et al. // Small. 2022. V. 18 (36). https://doi.org/10.1002/smll.202106580
  15. Huang K.S., Yang C.H., Wang Y.C. et al. // Pharmaceutics. 2019. V. 11 (5). P. 212. https://doi.org/10.3390/pharmaceutics11050212
  16. Huang Y., Liu C., Feng Q. et al. // Nanoscale Horizons. 2023. V. 8 (12). P. 1610. https://doi.org/10.1039/D3NH00217A
  17. Hao N., Nie Y., Zhang J.X.J. // Biomater. Sci. 2019. V. 7 (6). P. 2218. https://doi.org/10.1039/C9BM00238C
  18. Svenskaya Y., Pallaeva T. // Pharmaceutics. 2023. V. 15 (11). P. 2574. https://doi.org/10.3390/pharmaceutics15112574
  19. Maleki Dizaj S., Sharifi S., Ahmadian E. et al. // Expert Opin. Drug Deliv. 2019. V. 16 (4). P. 331. https://doi.org/10.1080/17425247.2019.1587408
  20. Zhao P., Tian Y., You J. et al. // Bioengineering. 2022. V. 9 (11). P. 691. https://doi.org/10.3390/bioengineering9110691
  21. Westrøm S., Bønsdorff T.B., Bruland Ø.S., Larsen R.H. // Transl. Oncol. 2018. V. 11 (2). P. 259. https://doi.org/10.1016/j.tranon.2017.12.011
  22. Li R.G., Lindland K., Bønsdorff T.B. et al. // Materials (Basel). 2021. V. 14 (23). P. 7130. https://doi.org/10.3390/ma14237130
  23. Feoktistova N., Rose J., Prokopović V.Z. et al. // Langmuir. 2016. V. 32 (17). P. 4229. https://doi.org/10.1021/acs.langmuir.6b00717
  24. Svenskaya Y.I., Lengert E.V., Tarakanchikova Y.V. et al. // J. Mater. Chem. B. 2023. V. 11 (17). P. 3860. https://doi.org/10.1039/D2TB02779H
  25. Ferreira A.M., Vikulina A.S., Volodkin D. // J. Control. Release. 2020. V. 328. P. 470. https://doi.org/10.1016/j.jconrel.2020.08.061
  26. Lengert E.V., Savkina A.A., Ermakov A.V. et al. // Mater. Sci. Eng. C. 2021. V. 126. P. 112144. https://doi.org/10.1016/j.msec.2021.112144
  27. Kiryukhin M.V., Lim S.H., Lau H.H. et al. // J. Colloid Interface Sci. 2021. V. 594. P. 362. https://doi.org/10.1016/j.jcis.2021.03.059
  28. Vikulina A.S., Feoktistova N.A., Balabushevich N.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20 (13). P. 8822. https://doi.org/10.1039/C7CP07836F
  29. Jenjob R., Phakkeeree T., Crespy D. // Biomater. Sci. 2020. V. 8 (10). P. 2756. https://doi.org/10.1039/C9BM01872G
  30. De Geest B.G., De Koker S., Sukhorukov G.B. et al. // Soft Matter. 2009. V. 5 (2). P. 282. https://doi.org/10.1039/B808262F
  31. Garcia L., Kerns G., O’Reilley K. et al. // Micromachines. 2021. V. 13 (1). P. 28. https://doi.org/10.3390/mi13010028
  32. Ermakov A.V., Chapek S.V., Lengert E.V. et al. // Micromachines. 2023. V. 15 (1). P. 16. https://doi.org/10.3390/mi15010016
  33. Shapovalov V.V., Chapek S.V., Tereshchenko A.A. et al. // Micro Nano Eng. 2023. V. 20. P. 100224. https://doi.org/10.1016/j.mne.2023.100224
  34. Sukhorukov G.B., Volodkin D.V., Günther A.M. et al. // J. Mater. Chem. 2004. V. 14 (14). P. 2073. https://doi.org/10.1039/B402617A
  35. Yashina A., Meldrum F., DeMello A. // Biomicrofluidics. 2012. V. 6 (2). P. 022001. https://doi.org/10.1063/1.3683162
  36. Witt H., Yandrapalli N., Sari M. et al. // Langmuir. 2020. V. 36 (44). P. 13244. https://doi.org/10.1021/acs.langmuir.0c02175
  37. Tan P., Li H., Wang J., Gopinath S.C.B. // Biotechnol. Appl. Biochem. 2020. P. bab.2045. https://doi.org/10.1002/bab.2045
  38. Horne J., De Bleye C., Lebrun P. et al. // J. Pharm. Biomed. Anal. 2023. V. 233. P. 115475. https://doi.org/10.1016/j.jpba.2023.115475
  39. Marchenko I., Borodina T., Trushina D. et al.// J. Microencapsul. 2018. V. 35 (7–8). P. 657. https://doi.org/10.1080/02652048.2019.1571642
  40. Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering / Ed. Taylor G.W. NY: Springer, 1987. https://doi.org/10.1007/978-1-4757-6624-0
  41. Bukreeva T.V., Marchenko I.V., Parakhonskiy B.V., Grigor’ev Y.V. // Colloid J. 2009. V. 71 (5). P. 596. https://doi.org/10.1134/S1061933X09050032
  42. Mikheev A.V., Pallaeva T.N., Burmistrov I.A. et al. // Cryst. Growth Des. 2023. V. 23 (1). P. 96. https://doi.org/10.1021/acs.cgd.2c00796

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies