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Abstract. An additive model has been developed for calculating the combinatorial (Shannon-like)
complexity of a signature of the natural tiling, which is used to describe the topological properties of
micro- and mesoporous materials, in particular, zeolites. To calculate the complexity of this type, a Python
program code has been compiled. The code was tested for tilings of a zeolite type. Correlations of the
calculated complexity of a signature of the tiling and the combinatorial complexity of the tiling-generating

structure were found.
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INTRODUCTION

Shannon’s information entropy H [1], also known
as Shannon’s or combinatorial complexity, is usually
expressed in bits and in this case has the form:

N
H == pilogy pi (1)
i=1
where p;, = m,/m is the proportion of m; elements of the
i-th type in a discrete set of m elements, each element

N
of which is assigned to one of s types, zl’i =1

i=1
Combinatorial complexity is used in chemistry as a
measure of the complexity of molecular assemblies [2],
including dendrimers [3], and its changes during
chemical transformations [4—7], and in crystallography
as a measure of the complexity of crystal structures
[8—17] and chemical compositions [18], as well as
systems of generating operations of crystallographic
groups [19] and systems of supporting contacts in the
crystal structure [20]. In mineralogy, information
entropy was used by Academician N.P. Yushkin to
assess the complexity of the distribution of minerals
by syngonies [21]. The use of information entropy in
mineralogy and crystallography is also the subject of a
mini-review by Yu.L. Voitekhovsky [22].

Combinatorial complexity belongs to a broader class
of species diversity indices called Hill numbers, since
it is a first-order Hill number [23]. In crystallography,
Hill numbers can be used to estimate the unevenness
of distributions of records in structural data banks for
crystallographic taxa such as syngonies, crystal classes,

and space groups [24]. Species diversity of inanimate
objects has some similarities with the diversity of
biological species [25].

In this paper, we study the combinatorial complexity
of the signature of a natural tiling [26]. A tiling is a
normal (face to face) partition of space into tiles, which
are generalized, not necessarily convex polyhedra, in
which each vertex is incident to two or more vertices, and
the faces can be curvilinear [27]. Each tiling corresponds
to a certain grid formed by vertices and edges. A tiling
is called natural if it meets the following conditions: the
symmetry of the tiling coincides with the symmetry of the
corresponding grid; the faces of the tile are strong rings
(cycles that are not the sum of several smaller cycles); all
strong rings of the grid, except for those belonging to the
faces, have intersections, i.e. common interior points;
if, in accordance with the previous points, different
tilings are possible, then a single tiling is constructed by
combining tiles with each other. Thus, if a natural tiling
for a given grid exists at all, then there is only one. The
search for natural tiling is generally non-trivial, but has
been implemented in the ToposPro software package for
along time [28]. It is common to use a face symbol of the
form [A° BP...] for tiles, which means that the tile a has
A-gonal faces, b B-gonal faces, A < B< ... . Fig. 1 shows
the natural tile [4%] of the pyrochlore structure. It is
common to designate tiling with a signature showing the
ratio of tiles, for example, the entry 2[34] + [3%] means
tetrahedral [3*] and octahedral [3?] tiles in a ratio of 2:1.

METHOD

For summing up the combinatorial complexity
from several sources of information, simple additivity
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Fig. 1. Tile [4*] of the eponymous natural tiling of the pyrochlore
structure Ca,Nb,O¢F.

is only suitable if the sources of information are
independent [29]. For example, if two subsystems of
one system are isolated from each other, i.e. separated
in space and do not exchange mass and energy. But if
the subsystems are interdependent, as is always the case
with substructures of one crystal structure [17], then
strong additivity must be satisfied: in addition to the
terms corresponding to individual subsystems, the sum
includes an additional term that takes into account the
increase in information due to mixing of subsystems.
In Sabirov’s works (e.g., [30]), such an additional
term is called an emergent parameter. The principles
of decomposition of the combinatorial complexity of
discrete multisets into contributions of individual sets
with an emergent parameter were considered in detail
in [13].

Let us apply this approach to the signature of natural
tiling, written in the standard form:

[ A B k[ A B

otk [A{'".B]”"...], )

n tiles of different sorts. The set of faces of the tile of the
i-thsort (i = 1, ..., n) is a multiset ®, = {(4,, a,), (B, b)),
...}. The combinatorial complexity of such a multiset by
definition (1) is equal to:

I P i
tile, i a;+b+... 082 a;+b+...
b b
_ 1 ! T eee
a; +b;+... 82 a+bi+... ' )

The set k; of tile faces of the i-th sort is a
multiset {(4;, ka;), (B, kb,), ...}, which has the same
combinatorial complexity Hy;.,;. Adding up the values
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of H,., taking into account the relationship between
the tiles according to the rule of strong additivity [13],

we obtain:

n
Hjling = Zi:l wiH e ; + H(Wi,wy,ow,), (4

_ ko,
wl - zki(pi 5 (5)
n
H(WI,W2,-~-sWn)=_ZizlwiIOgZ Wi, (6)

where @; = (a; + b; +...) is the number of edges in the
i-th tile, w; are the weight factors that determine the
contribution of Hy;, ;to the overall complexity of the tiling
H;,.. The complexity calculated by formula (6) is an
emergent parameter [30]. As follows from the properties
of strong additivity [13], Hy;, is the combinatorial

complexity of the multiset:

O = {U?Zl{(Ai,ai),(Bl-,b,-),...}}. (7)

Since each tiling face belongs to exactly two tiles,
it is included in the multiset @ twice, but this does not
affect the size distribution of edges and does not distort
the tiling stoichiometry. The unit of measurement of
Hy., and Hy,, is bits/face. Multiplying Hy;,, by the
total number of edges in the tiling signature yields
the total combinatorial complexity of the signature
(bits/signature):

Htiling,tot = Htiling Zki(Pi. (8)

Table 1 shows the Python code that allows
calculating the H;,, and H,,, ., values for an arbitrarily
large list of signatures written in a column of a file with
a table in MS Excel format. The table column should
not have a header, the signature format (2) is exactly
the same as in the output of the ToposPro program [28]
when constructing tiling, for example, “2[3"4] + [3"8]”.
By default, the program accesses the source data at
C:\tilings\input.xlsx and creates a file in the same
folder named input_with_entropies.xlsx, in which two
columns (also without headers) with the calculated Hy;,,
and H;, . values, respectively, are written next to the
signature column.

The method was tested on an array of signatures
of natural zeolite-type tilings presented in the
accompanying materials to the pioneering work
[31] and numbering 194 signatures at that time. A
search was also conducted for rank (Spearman) and
linear (Pearson) correlations of H;,, and H o0
with already known complexity indices of zeolite
frameworks, in particular with the combinatorial
complexity according to S.V. Krivovichev [; (bit
per framework vertex) and /s, (bit per reduced
cell) (according to known data for 201 frameworks
[32]), with the configuration complexity H,,, (bit
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Table 1. Code for calculating the values of Hy;,, and H;

iling

tiling, tot

BANARU

import pandas as pd
from collections import Counter
import numpy as np

# Load the Excel file without headers
file_path = ‘C:/tilings/input.xlsx’
df = pd.read_excel(file_path, header=None)

# Function to transform the expression
def transform_expression(expression):
def expand_term(term):
term = term.strip()
if term[0].isdigit():
coefficient, inner = term.split(‘[*, 1)
inner = ‘[* + inner
expanded_inner = expand_single term(inner)

expanded_inner_list = expanded_inner.strip(‘[]’).

split(‘,”)
return f”[{*,” join(expanded_inner_list *
int(coefficient))}]”
else:
return expand_single term(term)

def expand_single term(term):
term = term.strip(‘[]’)
if . in term:
factors = term.split(‘.”)
expanded_factors = []
for factor in factors:
if “*” in factor:
base, exp = factor.split(‘*’)
base = base.strip()
exp = int(exp.strip())
expanded_factors.extend([base] * exp)
else:
expanded factors.append(factor.strip())
return f’[{*,’.join(expanded_factors)}]”
elif “** in term:
base, exp = term.split(‘"’)
base = base.strip()
exp = int(exp.strip())
return f[{‘, join([base] * exp)}]”
else:
return f”[{term.strip()}]”

def modify_output(output):
parts = output.split(‘+’)
all_values = []
for i, part in enumerate(parts):
if part.startswith(‘[‘) and part.endswith(‘]’):
inner content = part[1:-1].split(‘,’)

indexed content = [f”{value.strip()}{i + 1}” for
value in inner_content]
all_values.extend(indexed content)

return f’[{*,".join(all_values)}]”

parts = expression.split(‘+’)

expanded_parts = [expand_term(part.strip()) for part in
parts]

final_output = ‘+’ join(expanded_parts)

return modify_output(final output)

# Function to calculate Shannon entropy
def calculate_shannon_entropy(numbers):
counts = Counter(numbers)
total _count = sum(counts.values())
probabilities = [count / total count for count in
counts.values()]
entropy = -sum(p * np.log2(p) for p in probabilities
ifp>0)
return entropy

# Processing each expression and calculating entropy
def process_expression(expression):
output = transform_expression(expression)
output_numbers = list(map(int, output.strip(‘[]’).
split(‘,”)))
entropy = calculate_shannon_entropy(output_num-
bers)
total_numbers = len(output_numbers)
weighted_entropy = entropy * total numbers
return entropy, weighted_entropy

# Clean and sanitize the expression input if necessary
def clean_expression(expression):
expression = expression.replace(‘]”’, *

).strip()
return expression

[$2X}

]’).replace(“’,

# Apply cleaning and process the expressions in the first
column

df]{0] = dff0].apply(clean_expression)

df[[‘Entropy’, ‘Weighted Entropy’]] = df]0].ap-
ply(lambda x: pd.Series(process_expression(x)))

# Save the updated DataFrame to the same file, adding
the Entropy and Weighted Entropy columns

output_file path = ‘C:/tilings/input_with_entropies.xlsx’
df.to_excel(output_file path, index=False,
header=False)

print(f”Processed entropies saved to {output_file path}”)
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per degree of freedom) and H,;,, (bit per reduced
cell) (according to previously obtained data for 242
frameworks [33]), as well as with the number of classes
of symmetrically equivalent edges in the framework
e”. To search for correlations, only those frameworks
were used that were included in each of the three
arrays of structures [31—33], with the exception of
disordered frameworks (refcodes *BEA, *MRE, and
*STO in the zeolite structure data bank [34]). Thus,
data on 191 frameworks were analyzed.

DISCUSSION OF RESULTS

Table 2 presents the correlation coefficients of the
complexity indices for zeolite-type frameworks and
the corresponding natural tilings. These data show
that all tested pairs of indices are positively correlated.
For a random sample of N = 191, the p-significance
level p < 0.05 corresponds to a correlation coefficient
greater than 0.142; thus, all the correlations found
are statistically significant. H;,, ., and e”’; Hy,,, are
the weakest correlated; Hy;,, o cOrrelates moderately
with other indices, including I, (Fig. 2a); the
correlation of H_ . With I, tot (Fig. 2b) and H
can be considered strong. The rank correlation
coefficient in all cases, except for those in which
one of the e” indices, turned out to be less than the
linear correlation coefficient, which can easily be
explained by the same logarithmic dependence of
the corresponding indices on some, albeit different,
structural parameters. As a comparative study of a
series of structures of Hg-containing minerals and
their synthetic analogues showed, all complexity
indices used today in crystallography are correlated
with each other to one degree or another [35].

The most complex tiling in the
studied sample was the PAU framework
(Hjing.or = 2928.3 bits/signature), which also has
the highest value of /; ,, = 4763.5 bits/cell. At the
same time, an even more complex SFV framework
(U0 = 19557.6 bits/cell) [32] was not included
in the studied sample. The simplest tiling was the
ABW framework (H ..o = 9.5 bits/signature),
while the simplest framework was sodalite (SOD,
I« = 16.5 bits/cell [32]). Tilings, like frameworks,
can be classified by complexity class [36]: very simple
(0—20 bits/signature), simple (20—100), medium
complexity (100—500), complex (500—1000), and
very complex (more than 1000). More than 80 % of
tilings are simple or medium complexity (Fig. 3).

Natural tilings allow to construct migration
routes of cations through framework voids and to
predict ionic conductivity, therefore they are of great
importance not only for zeolite-type frameworks, but
also for “anti-zeolite” [37] cationic frameworks [38],
as well as for mixed tetrahedral (77) frameworks,
for example, in the structures of boron [39] and
beryllophosphates [40], and even for heteropolyhedral
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Table 2. Correlations of complexity indices of zeolite
frameworks and tilings

Correlation | 1, bit/ H,. '
Index type peak bit/d.f. €
Linear 0.690 0.670 0.601
I{tiliny blt/
face
Ranked 0.653 0.633 0.640
Correlation [G,lol’ blt/ Hconf,tot’ i3
Index type cell | bit/cell | €
_ Linear 0.886 0.827 0.426
Htiling,tov blt/
signature
Ranked 0.779 0.774 0.615
Note: d.f. — degree of freedom.
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Fig. 2. Scatter diagram of Hy,, and I;; (), Hyyjpe o and I o (b) for
zeolite-type frameworks.
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Fig. 3. The proportion of natural tilings of different complexity
classes for zeolite-type frameworks.

MT frameworks, for example, in the structures of
eudialyte [41], aluaudite [42], keldyshite [43], minerals
of the columbite group [44], labuntsovite [45], in the
structures of synthetic germanates [46], vanadates [47],
molybdates [48]. Calculation of combinatorial
complexity according to S.V. Krivovichev can easily
calculate the complexity of any framework using
the ToposPro software package [28], and additional
indices, such as the Hornfeck configuration complexity,
can be calculated using the Python application crystIT
[15]. However, such calculations cannot be performed
without a cif file with structural data. On the contrary,
to calculate the combinatorial complexity of a natural
tiling signature, only the tiling signature is required,
not the structural data. Therefore, this complexity
index can be easily used in expert systems that are not
directly tied to structural data. A researcher who is not
a crystallography specialist can calculate this index for
a series of compounds simply from a list of signatures in
a literature source.
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