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Abstract. An additive model has been developed for calculating the combinatorial (Shannon-like) 
complexity of a signature of the natural tiling, which is used to describe the topological properties of 
micro- and mesoporous materials, in particular, zeolites. To calculate the complexity of this type, a Python 
program code has been compiled. The code was tested for tilings of a zeolite type. Correlations of the 
calculated complexity of a signature of the tiling and the combinatorial complexity of the tiling-generating 
structure were found.
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INTRODUCTION

Shannon’s information entropy H [1], also known 
as Shannon’s or combinatorial complexity, is usually 
expressed in bits and in this case has the form:
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Combinatorial complexity is used in chemistry as a 
measure of the complexity of molecular assemblies [2], 
including dendrimers [3], and its changes during 
chemical transformations [4–7], and in crystallography 
as a measure of the complexity of crystal structures 
[8–17] and chemical compositions [18], as well as 
systems of generating operations of crystallographic 
groups [19] and systems of supporting contacts in the 
crystal structure [20]. In mineralogy, information 
entropy was used by Academician N.P. Yushkin to 
assess the complexity of the distribution of minerals 
by syngonies [21]. The use of information entropy in 
mineralogy and crystallography is also the subject of a 
mini-review by Yu.L. Voitekhovsky [22].

Combinatorial complexity belongs to a broader class 
of species diversity indices called Hill numbers, since 
it is a first-order Hill number [23]. In crystallography, 
Hill numbers can be used to estimate the unevenness 
of distributions of records in structural data banks for 
crystallographic taxa such as syngonies, crystal classes, 

and space groups [24]. Species diversity of inanimate 
objects has some similarities with the diversity of 
biological species [25].

In this paper, we study the combinatorial complexity 
of the signature of a natural tiling [26]. A tiling is a 
normal (face to face) partition of space into tiles, which 
are generalized, not necessarily convex polyhedra, in 
which each vertex is incident to two or more vertices, and 
the faces can be curvilinear [27]. Each tiling corresponds 
to a certain grid formed by vertices and edges. A tiling 
is called natural if it meets the following conditions: the 
symmetry of the tiling coincides with the symmetry of the 
corresponding grid; the faces of the tile are strong rings 
(cycles that are not the sum of several smaller cycles); all 
strong rings of the grid, except for those belonging to the 
faces, have intersections, i.e. common interior points; 
if, in accordance with the previous points, different 
tilings are possible, then a single tiling is constructed by 
combining tiles with each other. Thus, if a natural tiling 
for a given grid exists at all, then there is only one. The 
search for natural tiling is generally non-trivial, but has 
been implemented in the ToposPro software package for 
a long time [28]. It is common to use a face symbol of the 
form [Aa.Bb...] for tiles, which means that the tile a has 
A-gonal faces, b B-gonal faces, A < B < ... . Fig. 1 shows 
the natural tile [436] of the pyrochlore structure. It is 
common to designate tiling with a signature showing the 
ratio of tiles, for example, the entry 2[34] + [38] means 
tetrahedral [34] and octahedral [38] tiles in a ratio of 2:1.

METHOD

For summing up the combinatorial complexity 
from several sources of information, simple additivity 



CRYSTALLOGRAPHY REPORTS  Vol. 70  No. 1  2025

	 COMBINATORIAL COMPLEXITY OF THE SIGNATURE OF A NATURAL TILING	 159

is only suitable if the sources of information are 
independent  [29]. For example, if two subsystems of 
one system are isolated from each other, i.e. separated 
in space and do not exchange mass and energy. But if 
the subsystems are interdependent, as is always the case 
with substructures of one crystal structure [17], then 
strong additivity must be satisfied: in addition to the 
terms corresponding to individual subsystems, the sum 
includes an additional term that takes into account the 
increase in information due to mixing of subsystems. 
In Sabirov’s works (e.g., [30]), such an additional 
term is called an emergent parameter. The principles 
of decomposition of the combinatorial complexity of 
discrete multisets into contributions of individual sets 
with an emergent parameter were considered in detail 
in [13].

Let us apply this approach to the signature of natural 
tiling, written in the standard form:
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where k1:k2:…:kn is the simplest integer relation between 
n tiles of different sorts. The set of faces of the tile of the 
i-th sort (i = 1, …, n) is a multiset Φi = {(Ai, ai), (Bi, bi), 
…}. The combinatorial complexity of such a multiset by 
definition (1) is equal to:
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The set ki of tile faces of the i-th sort is a 
multiset {(Ai, kiai), (Bi, kibi), …}, which has the same 
combinatorial complexity Htile,i. Adding up the values 

of Htile,i taking into account the relationship between 
the tiles according to the rule of strong additivity [13], 
we obtain:
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where φi = (ai + bi +…) is the number of edges in the 
i-th tile, wi are the weight factors that determine the 
contribution of Htile,i to the overall complexity of the tiling 
Htiling. The complexity calculated by formula (6) is an 
emergent parameter [30]. As follows from the properties 
of strong additivity [13], Htiling is the combinatorial 
complexity of the multiset:

	 Φ = ( ) ( ) …{ }{ }=
A a B bi i i ii
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Since each tiling face belongs to exactly two tiles, 
it is included in the multiset Φ twice, but this does not 
affect the size distribution of edges and does not distort 
the tiling stoichiometry. The unit of measurement of 
Htile,i and Htiling is bits/face. Multiplying Htiling by the 
total number of edges in the tiling signature yields 
the total combinatorial complexity of the signature 
(bits/signature):

	 H H ki itiling,tot tiling= ∑ ϕ .	 (8) 

Table  1 shows the Python code that allows 
calculating the Htiling and Htiling,tot values ​​for an arbitrarily 
large list of signatures written in a column of a file with 
a table in MS Excel format. The table column should 
not have a header, the signature format (2) is exactly 
the same as in the output of the ToposPro program [28] 
when constructing tiling, for example, “2[3^4] + [3^8]”. 
By default, the program accesses the source data at 
C:\tilings\input.xlsx and creates a file in the same 
folder named input_with_entropies.xlsx, in which two 
columns (also without headers) with the calculated Htiling 
and Htiling,tot values, respectively, are written next to the 
signature column.

The method was tested on an array of signatures 
of natural zeolite-type tilings presented in the 
accompanying materials to the pioneering work 
[31] and numbering 194 signatures at that time. A 
search was also conducted for rank (Spearman) and 
linear (Pearson) correlations of Htiling and Htiling,tot 
with already known complexity indices of zeolite 
frameworks, in particular with the combinatorial 
complexity according to S.V. Krivovichev IG (bit 
per framework vertex) and IG,tot (bit per reduced 
cell) (according to known data for 201 frameworks 
[32]), with the configuration complexity Hconf (bit 

Fig. 1. Tile [436] of the eponymous natural tiling of the pyrochlore 
structure Ca2Nb2O6F.
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import pandas as pd
from collections import Counter
import numpy as np

# Load the Excel file without headers
file_path = ‘C:/tilings/input.xlsx’
df = pd.read_excel(file_path, header=None)

# Function to transform the expression
def transform_expression(expression):

 def expand_term(term):
 term = term.strip()
 if term[0].isdigit():

 coefficient, inner = term.split(‘[‘, 1)
 inner = ‘[‘ + inner
 expanded_inner = expand_single_term(inner)
 expanded_inner_list = expanded_inner.strip(‘[]’). 
 split(‘,’)
 return f”[{‘,’.join(expanded_inner_list * 
int(coefficient))}]”

 else:
 return expand_single_term(term)

 def expand_single_term(term):
 term = term.strip(‘[]’)
 if ‘.’ in term:

 factors = term.split(‘.’)
 expanded_factors = []
 for factor in factors:

 if ‘^’ in factor:
 base, exp = factor.split(‘^’)
 base = base.strip()
 exp = int(exp.strip())
 expanded_factors.extend([base] * exp)

 else:
 expanded_factors.append(factor.strip())
 return f”[{‘,’.join(expanded_factors)}]”
 elif ‘^’ in term:
 base, exp = term.split(‘^’)
 base = base.strip()
 exp = int(exp.strip())
 return f”[{‘,’.join([base] * exp)}]”

 else:
 return f”[{term.strip()}]”

def modify_output(output):
parts = output.split(‘+’)
all_values = []

for i, part in enumerate(parts):
if part.startswith(‘[‘) and part.endswith(‘]’):

inner_content = part[1:-1].split(‘,’)

indexed_content = [f”{value.strip()}{i + 1}” for 
value in inner_content]
all_values.extend(indexed_content)

return f”[{‘,’.join(all_values)}]”

parts = expression.split(‘+’)
expanded_parts = [expand_term(part.strip()) for part in 
parts]
final_output = ‘+’.join(expanded_parts)

return modify_output(final_output)

# Function to calculate Shannon entropy
def calculate_shannon_entropy(numbers):

 counts = Counter(numbers)
 total_count = sum(counts.values())
 probabilities = [count / total_count for count in 
counts.values()]
 entropy = -sum(p * np.log2(p) for p in probabilities 
if p > 0)
 return entropy

# Processing each expression and calculating entropy
def process_expression(expression):

 output = transform_expression(expression)
 output_numbers = list(map(int, output.strip(‘[]’).
split(‘,’)))
 entropy = calculate_shannon_entropy(output_num-
bers)
 total_numbers = len(output_numbers)
 weighted_entropy = entropy * total_numbers
 return entropy, weighted_entropy

# Clean and sanitize the expression input if necessary
def clean_expression(expression):

 expression = expression.replace(‘]”’, ‘]’).replace(‘”’, 
‘’).strip()

return expression

# Apply cleaning and process the expressions in the first 
column
df[0] = df[0].apply(clean_expression)
df[[‘Entropy’, ‘Weighted Entropy’]] = df[0].ap-
ply(lambda x: pd.Series(process_expression(x)))

# Save the updated DataFrame to the same file, adding 
the Entropy and Weighted Entropy columns
output_file_path = ‘C:/tilings/input_with_entropies.xlsx’
df.to_excel(output_file_path, index=False, 
header=False)

print(f”Processed entropies saved to {output_file_path}”)

Table 1. Code for calculating the values ​​of Htiling and Htiling,tot
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per degree of freedom) and Hconf,tot (bit per reduced 
cell) (according to previously obtained data for 242 
frameworks [33]), as well as with the number of classes 
of symmetrically equivalent edges in the framework 
e’’. To search for correlations, only those frameworks 
were used that were included in each of the three 
arrays of structures [31–33], with the exception of 
disordered frameworks (refcodes *BEA, *MRE, and 
*STO in the zeolite structure data bank [34]). Thus, 
data on 191 frameworks were analyzed.

DISCUSSION OF RESULTS

Table 2 presents the correlation coefficients of the 
complexity indices for zeolite-type frameworks and 
the corresponding natural tilings. These data show 
that all tested pairs of indices are positively correlated. 
For a random sample of N = 191, the p-significance 
level p < 0.05 corresponds to a correlation coefficient 
greater than 0.142; thus, all the correlations found 
are statistically significant. Htiling,tot and e’’; Htiling are 
the weakest correlated; Htiling,tot correlates moderately 
with other indices, including IG,tot (Fig. 2a); the 
correlation of Hconf,tot with IG,tot (Fig. 2b) and Hconf,tot 
can be considered strong. The rank correlation 
coefficient in all cases, except for those in which 
one of the e’’ indices, turned out to be less than the 
linear correlation coefficient, which can easily be 
explained by the same logarithmic dependence of 
the corresponding indices on some, albeit different, 
structural parameters. As a comparative study of a 
series of structures of Hg-containing minerals and 
their synthetic analogues showed, all complexity 
indices used today in crystallography are correlated 
with each other to one degree or another [35].

The most complex tiling in the 
studied sample was the PAU framework 
(Htiling,tot = 2928.3  bits/signature), which also has 
the highest value of IG,tot = 4763.5  bits/cell. At the 
same time, an even more complex SFV framework 
(IG,tot = 19557.6 bits/cell) [32] was not included 
in the studied sample. The simplest tiling was the 
ABW framework (Htiling,tot = 9.5 bits/signature), 
while the simplest framework was sodalite (SOD, 
IG,tot = 16.5 bits/cell [32]). Tilings, like frameworks, 
can be classified by complexity class [36]: very simple 
(0–20 bits/signature), simple (20–100), medium 
complexity (100–500), complex (500–1000), and 
very complex (more than 1000). More than 80 % of 
tilings are simple or medium complexity (Fig. 3).

Natural tilings allow to construct migration 
routes of cations through framework voids and to 
predict ionic conductivity, therefore they are of great 
importance not only for zeolite-type frameworks, but 
also for “anti-zeolite” [37] cationic frameworks [38], 
as well as for mixed tetrahedral (TT) frameworks, 
for example, in the structures of boron [39] and 
beryllophosphates [40], and even for heteropolyhedral 

Table  2. Correlations of complexity indices of zeolite 
frameworks and tilings

Index Correlation 
type

IG, bit/
peak

Hconf, 
bit/d.f. e’’

Htiling, bit/
face

Linear 0.690 0.670 0.601

Ranked 0.653 0.633 0.640

Index Correlation 
type

IG,tot, bit/
cell

Hconf,tot, 
bit/cell e’’

Htiling,tot, bit/
signature

Linear 0.886 0.827 0.426

Ranked 0.779 0.774 0.615

Note: d.f. – degree of freedom.

(а)

 

(b)

0

1

2

3

4

5

0 1 2 3 4 5 6 7

H
til

in
g

H
til

in
g,

 to
t

IG

IG, tot

0

1000

2000

3000

0 1000 2000 3000 4000 5000

Fig. 2. Scatter diagram of Htiling and IG (a), Htiling,tot and IG,tot (b) for 
zeolite-type frameworks.
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MT frameworks, for example, in the structures of 
eudialyte [41], aluaudite [42], keldyshite [43], minerals 
of the columbite group [44], labuntsovite [45], in the 
structures of synthetic germanates [46], vanadates [47], 
molybdates [48]. Calculation of combinatorial 
complexity according to S.V.  Krivovichev can easily 
calculate the complexity of any framework using 
the ToposPro software package [28], and additional 
indices, such as the Hornfeck configuration complexity, 
can be calculated using the Python application crystIT 
[15]. However, such calculations cannot be performed 
without a cif file with structural data. On the contrary, 
to calculate the combinatorial complexity of a natural 
tiling signature, only the tiling signature is required, 
not the structural data. Therefore, this complexity 
index can be easily used in expert systems that are not 
directly tied to structural data. A researcher who is not 
a crystallography specialist can calculate this index for 
a series of compounds simply from a list of signatures in 
a literature source.
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