Orbiting dumbbell with a variable mass distribution: dynamics and control

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The plane orbital motion of a dumbbell-shaped body of variable length in the central field of attraction is considered. It is assumed that the mass of the dumbbell is concentrated at its end points. The attitude motion is considered Within the so-called satellite approximation, when the center of mass of the dumbbell moves in an unperturbed elliptical Keplerian orbit. The laws of changing the length of the dumbbell have been found, which make it possible to implement certain prescribed classes of its motion around the center of mass. In the general case, the chaotic nature of motion is detected numerically using the Poincare map for the period.

Sobre autores

A. Burov

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences

Email: jtm@narod.ru
Moscow, Russia

I. Kosenko

Moscow Aviation Institute (national Research University)

Email: jtm@narod.ru
Moscow, Russia

V. Nikonov

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: jtm@narod.ru
Moscow, Russia

Bibliografia

  1. Roberson R.E. Torques on a Satellite Vehicle from Internal Moving Parts // J. Applied Mechanics. 1958. V. 25. Iss. 2. P. 196-200.
  2. Roberson R.E. Torques on a Satellite Vehicle from Internal Moving Parts (Supplement) // J. Applied Mechanics. 1958. V. 25. Iss. 2. P. 287-288.
  3. Roberson R.E. Comments on the incorporation of man into the attitude dynamics of spacecraft // J. Astronautical Sciences. 1963. V. 10. Iss. 1. P. 27-28.
  4. Thomson W.T., Fung Y.C. Instability of spinning space stations due to crew motion // AIAA Journal. 1965. V. 3. Iss. 6. P. 1082-1087.
  5. Harding C.F. Manned vehicles as solids with translating particles: I // J. Spacecraft and Rockets. 1965. V. 2. Iss. 3. P. 465-467.
  6. Poli C.R. Effect of man's motion on the attitude of a satellite // J. Spacecraft and Rockets. 1967. V. 4. Iss. 1. P. 15-20.
  7. Bainum P.M. The dynamics of spin stabilized spacecraft with movable appendages, part 2. Final Report NASA-CR-148815. Washington, D.C.: Howard University, School of Engineering, Department of Mechanical Engineering, 1976.
  8. Rochon B.V., Scheer S.A. Crew Activity & Motion Effects on the Space Station. Report NAS 9-15800. Marshall Space Flight Center Huntsville, Alabama, 1986.
  9. Amir R.A., Newman D.J. Research into the effects of astronaut motion on the spacecraft: a review // Acta Astronautica. 2000. V. 47. Iss. 12. P. 859-869.
  10. Bainum P.M., Sellappan R. The use of a movable telescoping end mass system for the time-optimal control of spinning spacecraft // Acta Astronautica. 1978. V. 5. Iss. 10. P. 781-795.
  11. Полянская И.П. Колебания спутника с компенсирующими устройствами на эллиптической орбите // Космические исследования. 1982. Т. 20. Вып. 5. С. 674-681.
  12. Edwards T.L. A movable mass control system to detumble a disabled space vehicle. Astronautics Research Report No. 73-5. The Pensylvania State University. Department of Aerospace Engineering, 1973.
  13. Kunciw B.G., Kaplan M.H. Optimal space station detumbling by internal mass motion // Automatica. 1976. V. 12. Iss. 5. P. 417-425.
  14. Schiehlen W. Über die Lagestabilisirung künstlicher Satelliten auf elliptischen Bahnen. Diss. Dokt.-Ing., Technische Hochschule Stuttgart, Stuttgart. 1966. 148 S.
  15. Schiehlen W. Über den Drallsatz für Satelliten mit im Innern bewegten Massen // Z. angew. Math. Mech. 1966. Bd. 46. Sonderheft. S. T132-T134.
  16. Schiehlen W., Kolbe O. Gravitationsstabilisierung von Satelliten auf elliptischen Bahnen // Archive of Applied Mechanics (Ingenieur-Archiv). 1969. V. 38. P. 389-399.
  17. Haeussermann W. An attitude control system for space vehicles // ARS Journal. 1959. V. 29. Iss. 3. P. 203-207.
  18. Merrick V.K. Some Control Problems Associated with Earth-oriented Satellites. NASA Technical Note D-1771. 1963.
  19. Асланов В.С., Безгласный С.П. Гравитационная стабилизация спутника с помощью подвижной массы // Прикладная математика и механика. 2012. Т. 76. Вып. 4. С. 563-573.
  20. Ahn Y.T. Attitude Dynamics and Control of a Spacecraft Using Shifting Mass Distribution. Dissertation in Aerospace Engineering. The Pennsylvania State University. College of Engineering. 2012.
  21. Маркеев А.П. О динамике спутника, несущего подвижную относительно него точечную массу // Изв. РАН. МТТ. 2015. No 6. С. 3-16.
  22. Hwang J. Attitude Stabilization of Spacecraft Using Moving Masses. Master thesis in Aerospace Engineering. The University of Texas at Arlington. 2016.
  23. Virgili-Llop J., Polat H.C., Romano M. Using shifting masses to reject aerodynamic perturbations and to maintain a stable attitude in very Low Earth Orbit // Advances in the Astronautical Sciences. 2016. V. 158. P. 2129-2148.
  24. Chesi S., Gong Q., Romano M. Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting // J. Guidance, Control, and Dynamics. 2017. V. 40. Iss. 7. P. 1613-1626.
  25. Virgili-Llop J., Polat H.C., Romano M. Attitude stabilization of spacecraft in very low earth orbit by center-of-mass shifting // Frontiers in Robotics and AI. 2019. V. 6. Art.ID 7.
  26. Белецкий В.В. Очерки о движении космических тел. М.: Наука, 1977. 430 с.
  27. Kholostova O.V. Nonlinear Stability Analysis of Relative Equilibria of a Solid Carrying a Movable Point Mass in the Central Gravitational Field // Rus. J. Nonlin. Dyn. 2019. V. 15. Iss. 4. P. 505-512.
  28. Xue Zhong, Jie Zhao, Kaiping Yu et al. Relative Equilibrium and Stability of a Three-body Tethered Satellite in an Elliptical Orbit // Research Square. 2022.
  29. Burov A.A., Kosenko I.I., Nikonov V.I. Spacecraft with Periodic Mass Redistribution: Regular and Chaotic Behaviour // Rus. J. Nonlin. Dyn. 2022. V. 18. Iss. 4. P. 639-649.
  30. Burov A.A., Nikonov V.I. On the nonlinear Meissner equation // International J. Non-Linear Mechanics. 2019. V. 110. P. 26-32.
  31. Burov A.A., Nikonov V.I. On the motion of the pendulum in an alternating, sawtooth force field // International J. Bifurcation and Chaos in Applied Sciences and Engineering. 2020. V. 30. Iss. 9. Art. ID 2050135.
  32. Буров А.А. О колебаниях вибрирующей гантели на эллиптической орбите // Доклады Академии наук. 2011. Т. 437, No 2. С. 186-189.
  33. Белецкий В.В. О либрации спутника // Искусственные спутники Земли. 1959. Вып. 3. С. 13-31.
  34. Белецкий В.В. Движение искусственного спутника относительно центра масс. М.: Наука, 1965.
  35. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Из-во МГУ, 1997. 624 с.
  36. Буров А.А., Косенко И.И. О существовании и устойчивости орбитально равномерных вращений вибрирующей гантели на эллиптической орбите // Доклады Академии наук. 2013. Т. 451, No 2. С. 164-167.
  37. dos Santos D.P.S. Stability solutions of a dumbbell-like system in an elliptical orbit // J. Physics Conference Series. 2015. V. 641. Art.ID 12004.
  38. dos Santos D.P.S., Formiga J.K.S. Analysis of stability for uniform rotations of a dumbbell system in an elliptic orbit // International J. Advanced Engineering Research and Science (IJAERS). 2021. V. 8. Iss. 2. P. 97-105.
  39. Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // Успехи математических наук. 1983. Т. 38. Вып. 1(229). С. 3-67.
  40. Beletsky V.V. Reguläre und chaotische Bewegung starrer Körper. B.G. Teubner Verlag, 1995.
  41. Буров А.А., Косенко И.И. О плоских колебаниях гантели переменной длины в центральном поле ньютоновского притяжения. Точная постановка // сб. Современные проблемы математики и механики. Сер. Математика, механика. 2013. Вып. 2. М.: Издательство попечительского совета механико-математического факультета МГУ. Том 7. С. 11-21.
  42. Burov A.A., Kosenko I.I. Planar oscillations of a dumbbell of a variable length in a central field of Newtonian attraction. Exact approach // International J. Non-Linear Mechanics. 2015. V. 72. P. 1-5.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».