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The paper considers various options for implementing the orbital orientation mode of a 
spacecraft intended for conducting experiments in microgravity conditions over long time intervals. 
The system of gyroscopic controls (gyrosystem) is used as the actuators of the angular motion 
control system. The gyrosystem control laws proposed in the paper allow not only to provide a 
given orientation of the spacecraft, but also to limit the accumulation of the gyrosystem's own 
angular momentum, which significantly increases the duration of time intervals of unperturbed 
motion of the spacecraft. The efficiency of the considered control laws in the presence of external 
destabilizing disturbing moments acting on the spacecraft is confirmed by the results of numerical 
modeling of the equations of motion. The main orientation mode of the spacecraft investigated in 
the paper is its orbital orientation using gyrodamping. For this mode, an assessment of the level of 
quasi-static microaccelerations occurring on board the spacecraft is carried out, and the results of 
their spectral analysis are shown. 
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INTRODUCTION 

This work is devoted to the calculation of the level of microaccelerations occurring on board 
a spacecraft (SC) in its orbital orientation mode, as well as the analysis of their spectral 
characteristics. The SC under consideration is intended for conducting research in the field of 
microgravity over long time intervals. Currently, many works [1–3] have shown that in the case of 
a low-orbit SC, the most suitable for conducting experiments in the field of space materials science 
are a circular orbit and SC rest in the orbital coordinate system — orbital orientation. Depending 
on the conditions of the experiments, the orbital orientation of the SC can be realized both in the 
vicinity of its gravitationally stable equilibrium position and in an unstable one. In any case, 
maintaining such orientation requires the expenditure of energy or a working fluid. 

One of the possible options for implementing spacecraft orbital orientation may be its 
passive orbital orientation, close to gravitationally stable, however, even in this case, due to the 
influence of the aerodynamic moment, it may turn out to be unstable and without proper correction 
cannot be maintained for a long time [4-5]. Or the level of microaccelerations on board the 
spacecraft will be unacceptable for conducting experiments. In this regard, to ensure long-term 
orbital orientation of the spacecraft in the presence of the destabilizing effect of the aerodynamic 
moment, damping devices can be used [6]. Gyroscopic actuators of the spacecraft control system 
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(gyrosystem) can be considered as such devices. To implement damping using a gyrosystem (so-
called gyrodamping), it is sufficient to set an appropriate control law for the inherent kinetic 
moment of the gyrosystem (gyrostatic moment of the spacecraft). Such orbital orientation of the 
spacecraft can be called semi-passive, i.e., it can be considered active, but the energy costs for its 
maintenance are low. Additionally, gyrodamping can be implemented without accumulating the 
kinetic moment of the spacecraft, and there will be no energy or propellant costs for unloading the 
gyrosystem. Also, the need to unload the gyrosystem reduces the time of undisturbed spacecraft 
flight and imposes restrictions on the time of conducting experiments on board, therefore, 
implementing the orbital orientation mode without accumulating the gyrostatic moment of the 
spacecraft is a very significant advantage. The fundamental possibility of implementing 
gyrodamping is shown in the study   [7]. In this paper, one of the possible variants of the gyrosystem 
control law is proposed, and the results of the numerical solution of the spacecraft motion equations 
are presented, confirming the possibility of implementing an orbital orientation mode using 
gyrodamping. Also, for the specified mode, an assessment of the level of quasi-static 
microaccelerations arising on board the spacecraft is carried out, and the results of their spectral 
analysis are shown.  

Another possible option for spacecraft orientation for conducting space experiments on 
board is directly its orbital orientation in the vicinity of a gravitationally stable or unstable 
equilibrium position using a gyrosystem. As mentioned above, when using a gyrosystem, one of 
the criteria for its operational efficiency is the rate of accumulation of the gyrostatic moment. This 
rate determines the time intervals between gyrosystem unloadings and should be sufficiently small 
to provide prolonged segments of spacecraft flight with a low level of microaccelerations. The 
corresponding control laws implementing the orbital orientation of the spacecraft with 
simultaneous limitation of its gyrostatic moment growth were proposed in publications   [7-10]. In 
this paper, one of the possible methods for selecting coefficients for each of the control laws 
considered in the article   [8] is proposed, and the results of numerical solution of the spacecraft 
motion equations are presented, confirming the possibility of implementing the used control laws 
with the selected coefficient values.  

All control laws proposed in this paper can be implemented for most spacecraft (including 
promising upper stages) that have a gyrosystem as part of their equipment, and for which it is 
required to maintain the orbital orientation mode in a low near-circular orbit for a long period of 
time without unloading the gyrostatic moment, which makes the task of implementing the modes 
considered in this paper quite relevant.  
  

2. MATHEMATICAL MODELING OF MICROACCELERATIONS  
Quasi-static microaccelerations on a low-orbit spacecraft are caused by four reasons: 1) 

spacecraft motion relative to the center of mass as a rigid body; 2) gravitational field gradient; 3) 
aerodynamic drag; 4) action of force created by control elements. If the spacecraft performs 
uncontrolled motion or a gyrosystem is used to control it, then the last of the listed reasons 
disappears. In such a case, the quasi-static microacceleration at a given fixed point on board is 
described by a simple formula, and to use it, it is sufficient to know only the orbit and rotational 
motion of the spacecraft.  

Let the spacecraft represent a rigid body, and point P is rigidly attached to its frame. 
Microacceleration b  at point P  is defined as the difference between the gravitational field 
intensity at this point and the absolute acceleration of the latter. The role of vector b  in orbital 
experiments is analogous to the role of free-fall acceleration in experiments on Earth's surface. In 



particular, if a test body with negligibly small mass P  , pm  is fixed at point then the reaction force 
acting on this body from the spacecraft will be equal to pm− b  . The approximate formula for 
calculating microaccelerations has the form [11]  
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Here ρ  is the radius vector of point P  relative to the center of mass of the spacecraft - point  ; 

 is the absolute angular velocity of the spacecraft; the dot above a letter denotes differentiation 
with respect to time  ; Eµ  is the gravitational parameter of the Earth; r  is the geocentric radius 

vector of point  , | |r = r  ; v  is the velocity of this point relative to the Earth's surface, v | |= v  
; aρ  is the atmospheric density at point O ; c  is the ballistic coefficient of the spacecraft. The 
terms on the right side of formula   (1) correspond to the first three causes of microaccelerations 
mentioned above.  

Formula   (1) was used to calculate real quasi-static microaccelerations that occurred on 
spacecraft in flight [1,   2,   11]. It can also be used to predict microaccelerations [3,   12,   13]. In 
this case, equations of spacecraft motion are formulated, a motion mode is selected, the solution of 
the motion equations simulating this mode is calculated, and along the found solution, the 
microacceleration at a given point on board is calculated using formula   (1). This is exactly how 
formula   (1) is applied below.  
  

3. EQUATIONS OF SPACECRAFT MOTION  
The spacecraft is considered a gyrostat whose center of mass moves along a geocentric 

orbit. To describe its motion, we will use three right-handed Cartesian coordinate systems.  
The coordinate system 1 2 3Ox x x  associated with the spacecraft is formed by its principal 

central axes of inertia. The origin of the system is at the center of mass of the spacecraft - point 
Somewhat simplifying the model, we assume that the axes of system 1 2 3Ox x x  are associated with 
characteristic elements of the spacecraft structure (fig.   1). Let us assume that the spacecraft has 
the shape of a right circular cylinder with radius cR  and height cL  with two identical rectangular 
plates - solar panels, with a total area of bS  . In order to minimize disturbances during experiments 
on board the spacecraft, it is planned to use solar panels without a special drive that orients the 
working surfaces of the panels relative to the Sun. The axis 1Ox  coincides with the axis of the 
cylinder. The solar panels are located in the plane 1 3Ox x  symmetrically with respect to the axis 

1Ox  , the sides of the panels are parallel to the axes 1Ox  and 3Ox  , the axis 2Ox  is perpendicular 
to the plane of the solar panels. The coordinates of the geometric centers of the cylinder and the 
solar panel plates will be denoted as ( ,0,0)cx  and ( ,0,0)bx  respectively. Here and below, unless 



otherwise specified, the components of vectors and coordinates of points refer to the system 
1 2 3Ox x x  . The basis unit vectors of the system 1 2 3Ox x x  will be denoted as 1e , 2e , 3e . 

  
Fig. 1. General shape of the spacecraft and position of the body-fixed coordinate system  

  
  
  
  
In the orbital coordinate system 1 2 3OX X X  , the axes 3OX  and 2OX  are directed along the 

geocentric radius vector of the point  and the vector of the angular momentum of the spacecraft's 
orbital motion, respectively. The basis unit vectors of this system will be denoted a 1E , 2E , 3E . 

The origin of the Greenwich coordinate system E 1 2 3О Y Y Y  is the point EO  located at the 
center of the Earth, the plane E 1 2О Y Y  coincides with the equatorial plane, the axis E 1О Y  intersects 
the Greenwich meridian, the axis E 3О Y  is directed along the Earth's rotation axis toward the North 
Pole. We assume that this system rotates with a constant angular velocity Eω  around the axis E 3.О Y  

We denote the transition matrix from the orbital system to the Greenwich system as 
3
, 1( )ij i jW w ==  , where ijw  is the cosine of the angle between the axes E iO Y  and jOX  . The elements 

of this matrix are expressed through the components of the geocentric radius vector of the point  
and the velocity vector of this point relative to the Earth's surface in the Greenwich coordinate 
system. The transition matrices from the system 1 2 3Ox x x  to the Greenwich and orbital systems will 

be denoted as 3
, 1( )ij i jU u ==  and 3

, 1( )ij i jQ q ==  respectively. Here ij i jq = ⋅E e  , iju  and ijq  are the 
cosines of the angles that the axis jOx  forms with the axes E iO Y  and iOX  . The following relation 
holds: U WQ= . 

The matrix Q  is parameterized by angles γ , δ  and β , , which are introduced as follows 
[3]. The system 1 2 3Ox x x  can be obtained from the system 1 2 3OX X X  by three consecutive 
rotations: 1) by angle / 2δ + π  around the axis 2OX  ; 2) by angle β  around the new axis 3OX  ; 3) 
by angle γ  around the axis 1,OX  obtained after the first two rotations and coinciding with the axis 

1Ox  . The elements of the matrix Q  are expressed through these angles using the formulas  
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The spacecraft motion equations consist of two subsystems. One subsystem of equations 

for the vectors  and  describes the motion of the spacecraft's center of mass in the Greenwich 



coordinate system, taking into account the non-central nature of Earth's gravitational field and 
atmospheric drag [14]. The non-central field is accounted for up to terms of order (16,   16) 
inclusive in the expansion of Earth's gravitational potential in a series of spherical functions. The 
atmosphere is considered to rotate with the Earth, and its density is calculated according to the 
GOST R   25645.166-2004 model. The atmospheric parameters and the spacecraft's ballistic 
coefficient are considered constant throughout the entire integration interval of the motion 
equations.  

The other subsystem describes the spacecraft's motion relative to its center of mass 
(rotational motion) and has the form  
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Here, the symbol /d dt  denotes the local derivative of a vector in the system 1 2 3;Ox x x  — the 

angular momentum of the spacecraft in its motion relative to the center of mass;  
— the absolute angular velocity of the spacecraft; 1 2 3

ˆ diag( , , )I I I I=  — the inertia tensor of the 

spacecraft; T
1 2 3( , , )h h h=H  — the gyrostatic moment of the spacecraft (the intrinsic angular 

momentum of the gyro system); gM  — the gravitational moment acting on the spacecraft; aM  — 
the aerodynamic moment acting on the spacecraft; 1u  and 2u  — the first and second rows of the 

transition matrix  , respectively. The third row of this matrix is 3 1 2= ×u u u  . The rows 1u  and 

2u are related by the orthogonality conditions of the matrix U  ( iu  — unit vectors of the axes E iO Y  
), which are taken into account when setting the initial conditions for these variables.  

To close the subsystem of equations   (3), we need to add an equation describing the change 
in the gyrostatic moment of the spacecraft in the form  

 c
d
dt

+ × = −
H ω H M


 ,   (4)  

where cM  — the moment acting from the gyro system on the spacecraft body. Expressions for 

cM  will be provided below.  

The gravitational moment is given by the formula   [15] E
5

ˆ3 ( )g I
r
µ

= ×M r r  .  

The formula for the aerodynamic moment is given by  

( )1a p= ×M v e  , ( )2 2 2
1 2 2 3| v | | v | 2 v vа c c b b c c cp R y S y R L y= ρ π + + +  ,  

where vi   are components of the vector  , 1,3i =  . When deriving the last formula, it was assumed 
that atmospheric molecules experience a completely inelastic collision when hitting the spacecraft 
body [16], and the mutual shadowing of the spacecraft body and solar panels from the incoming 
aerodynamic flow was not taken into account. Such simplification is justified because for most 
spacecraft movements, the relative duration of time intervals in which this shadowing is significant 
is small.  



Let us present the numerical values of the parameters of the described model used in 
calculations. Spacecraft parameters: m   =   6440   kg, I 1   =   2600   kg   m 2 , I 2   =   11100   kg   m 
2 , I 3   =   10900   kg   m 2 , R c   =   1.3   m, L c   =   5.0   m, S b   =   33   m 2 , x b   =   –1   m, x c   =   0.3   m. 
The initial conditions for the spacecraft center of mass motion were specified at the ascending node 
of the orbit at 09:10:34  UTC on 21.IX.2007. Initial orbital elements: apogee altitude 450   km, 
perigee altitude 400   km, inclination 63.0°  , argument of perigee latitude 53.5°  , longitude of the 
ascending node (measured from the mean vernal equinox of the date epoch) 164.0° . 
Microaccelerations were calculated at the point  with coordinates (–1   m, 0.7   m, 0.5   m) 
(Fig.   1). This point is located on the inner wall of the spacecraft working compartment, 
approximately at its middle. Scientific equipment can be installed near this point. Atmospheric 
model parameters: 10.7 81 150,F F= = 12.pA =  

The initial conditions for equations   (3) were set at the same time as the initial conditions 
for the orbital motion. This moment served as the time reference point — point 0t =  .  
  

4. ORBITAL ORIENTATION MODE OF A SPACECRAFT USING GYRODAMPING  
First, let's consider the gravitational orientation mode of a spacecraft. Equations   (3) are 

inconvenient for explaining such a mode and the method of its implementation, but this can be 
done using simpler equations that take into account only the main factors. Let's assume that the 
orbit of the spacecraft's center of mass is circular and unchanged in absolute space, and only 
gravitational torque acts on the spacecraft. In this case, equations   (3) can be transformed to the 
form  
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In this case, system   (5) has 24 stationary solutions in which 0 2= ωω E  , the unit vectors  ie  

coincide with the unit vectors  ,j±E  , 1,3i j =  , where 3
0 /Eω r= µ  is the mean motion of the 

spacecraft (orbital frequency). These solutions describe the equilibrium positions (rest) of the 
spacecraft in the orbital coordinate system [15]. Here ( )T3 31 32 33, ,q q q=E  , and the values 3iq  are 
expressed through the angles γ , δ  and β  by formulas   (2).  

We shall limit ourselves to considering two stationary solutions of the system   (5), given 
by the relations:  
 1 3= −e E , 2 2=e E , 3 1=e E ,                (6)  
 1 1=e E , 2 3=e E , 3 2= −e E  .   (7)  

  
When the inequalities 1 3 2I I I< <  are satisfied, solution   (6) is stable, and solution   (7) is unstable 
[15]. The stable stationary solution   (6) can be used to implement a passive three-axis gravitational 
orientation mode of the spacecraft. Further in the text, the stable equilibrium position   (6) will be 
called the gravitational orientation of the spacecraft.  



To implement gyrodamping for the orbital orientation mode of the spacecraft, close to its 
gravitational orientation, we define the law of change of the intrinsic kinetic moment of the 
gyrosystem in the form [7]  
 ( )0 2 0 2

ˆ ˆT h J+ − = −ωH H e ω e  ,   (8)  

where 1 2 3
ˆ diag( , , )T = τ τ τ  ; 1 2 3

ˆ diag( , , )J J J J=  ; iJ , iτ , 1,3i =   are positive constants; 0h  is an 
arbitrary constant. Using the control law   (8) for the rotational motion of the spacecraft implies the 
presence of angular velocity sensors on board, according to the readings of which the intrinsic 
kinetic moment of the gyrosystem changes.  

The system of equations   (5),   (8) admits a stationary solution  
 0γ = δ = β = , 1 2 0 3 0ω = ω −ω = ω = , 1 2 0 3 0h h h h= − = = .  (9)  
This solution also describes the equilibrium position of the spacecraft in the orbital coordinate 
system, while the orientation of the system axes 1 2 3Ox x x  corresponds to the relations   (6). To 
study the stability of the stationary solution   (9), one can use the theorems of E.A.  Barbashin and 
N.N.  Krasovsky [17]. Let's consider the Lyapunov function [7]  
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In the vicinity of the solution   (9) with accuracy up to third-order terms of smallness with respect 
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The non-trivial conditions for positive definiteness of the written quadratic form are expressed by 
the inequalities  
 ( )2 3 3 0 0 0I I J h− − ω + > , ( )2 1 1 0 04 0I I J h− − ω + >   , 3 1I I> .  (10)  
If the latter inequalities are satisfied and  
 2 1I I≠  ,   (11)  
then the intersection of the set 0V =  with a sufficiently small neighborhood of the equilibrium 
position   (9) does not contain entire trajectories of the system   (5),   (8) other than expressions   (9). 
This statement is established by the method described in publication   [18], through analysis of the 



corresponding linearized equations. When inequalities   (10),   (11) are satisfied, the conditions of 
the Barbashin   -  Krasovsky theorem ([17], theorem   3.2) are met and the equilibrium position   (9) 
is asymptotically stable. If at least one of the inequalities   (10) is satisfied with the opposite sign 
and inequality   (11) still holds, then the conditions of Krasovsky's theorem ([17], theorem   4.1) 
are satisfied and the equilibrium position   (9) is unstable [7].  

Due to various disturbing factors (orbit ellipticity, influence of aerodynamic moment, etc.), 
the system of equations   (3) for the considered spacecraft does not have solutions describing its 
rest (9) in the orbital coordinate system, however, due to the continuous dependence of the solutions 
of differential equations on initial conditions and parameters, these equations admit solutions 
which, after recalculating the variables 1iu , 2iu , 1,3i =  into angles  γ , δ  and β  will be close to 
the rest position (9).  
  

5. CONTROL OF THE ROTATIONAL MOTION  
OF A SPACECRAFT  

To implement the control law   (8), we express the moment cM  acting from the gyro system 
on the spacecraft body and stabilizing the gravitational orientation mode of the spacecraft in the 
vicinity of position   (9) in the form  
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The system   (4), (5), (12), linearized in the vicinity of the stationary solution   (9) splits into two 
independent subsystems, which have the form  
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The structure of matrices 1K , 2K   implies that information about the spacecraft's orientation 
is not required to form the control of its rotational motion. We will choose the values of coefficients 

iJ , iτ , 1,3i =  in such a way that all roots of the characteristic polynomial of the linearized system 
lie in the left half-plane of the complex variable sufficiently far from the imaginary axis. More 
precisely, we will consider the quality criterion of the control law   (12) to be the degree of stability 
of the linearized system   (13),   (14) — the negative real part of the rightmost root of its 
characteristic polynomial. In this case, this polynomial decomposes into polynomials of the third  

( ) (1)
1 1 1 3det 0A B K E + − λ =   ,  

  
and sixth orders  

( ) (2)
2 2 2 6det 0A B K E + − λ =   ,  

which are the characteristic polynomials of the first   (13) and second subsystems   (14) 
respectively. Here 3E  and 6E are identity matrices of the third and sixth orders respectively.  

The third-order polynomial depends on the coefficients 2J , 2τ  . We choose them so that 

this polynomial has a triple real root (1)
jλ = −α , 1,3j =  where 0α >  is the degree of stability. We 

get  
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From the given relations, it is evident that the maximum degree of stability of the first 
subsystem   (13) is determined only by the moments of inertia of the spacecraft and the height of 
its orbit. For the spacecraft under consideration  

0ω  = 1.125·10-3 с-1, α  = 9.73·10-4 с-1, 2τ  = 3084 с, 2J  = 88000 кг м2. 

The sixth-order polynomial contains coefficients  ,  and  ,  . Taking into account 
the relations   (10) for the asymptotic stability of system   (14), the following conditions must be 
met:  

 ( ) 0
1 2 1

0
0 4 hJ I I

 
< < − + ω 

, 0
3 2 3

0
0 hJ I I

 
< < − + ω 

.  (15)  

Taking the value 0h   =   5  N   m   s, we find the values of 1J , 3J   in the form  
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  kg   m 2 .  

Let's take the values  
1 1 1 4/ 805Jτ = χ =  с, 3 3 3 2/ 322Jτ = χ =  s,  

  
where 1 4χ =  N   m   s, 3 1χ =  N   m   s. The roots of the sixth-order polynomial are equal to  

(2) 4 3 1
1,2 1.37 10 2.0 10 сi− − −λ = − ⋅ ± ⋅ , (2) 4 5 1

3,4 1.37 10 3.7 10 сi− − −λ = − ⋅ ± ⋅ , 



(2) 4 3 1
5,6 8.61 10 1.4 10 сi− − −λ = − ⋅ ± ⋅ . 

The degree of stability of the sixth-order polynomial α   =   1.37·10 -4   s -1 . Thus, the control 
law   (12) with the specified parameter values iJ , iτ , 1,3i =  ensures the asymptotic stability of the 
system   (3),   (4) in the neighborhood of the stationary solution   (9).  
  

6. MATHEMATICAL MODELING OF THE  
ORBITAL ORIENTATION MODE OF A SPACECRAFT  

USING GYRO DAMPING  
Let's show that the chosen law of change for the control moment of the gyro system   (12) 

indeed provides stable orientation of the spacecraft, close to gravitational. For this purpose, we will 
calculate the solutions of the system   (3),   (4),   (12) with initial conditions (0) (0) (0) 0γ = δ = β =
, 1 3(0) (0) 5h h= =  N   m   s, 2(0) 0h =  and  
 1 2 0 3(0) (0) (0) 0.01ω = ω −ω = ω =   °/s   (16)  
over a time interval of 140   days. The values of the corresponding coefficients of the control 
law   (12) are taken as in the section "Control of spacecraft rotational motion". In Fig.   2-4 show 
the graphs of time dependence of angles γ , δ , β , components ih , 1,3i =  and the module of the 

gyrostatic moment | |H  , as well as components ib , 1,3i =  and the module | |b  of the 
microacceleration vector. The graphs do not show the initial segment with a duration of 1   day, 
containing the transient process caused by errors in setting the initial angular velocity (16) and 
initial values of the gyrostatic moment. The calculation results show that the control law (12) 
provides stable orbital orientation of the spacecraft, and the gyrostatic moment remains limited. In 
the steady state, the amplitudes of oscillations of the angular velocity components are limited by 
the following values:  

1| |ω <6·10-5 °/s, 2 0| |ω −ω <2·10-3 °/s, 3| |ω <3·10 -4   °/s.  
Due to the selected time scale in Fig.   2-4, oscillations of the corresponding values with 

frequencies multiple of 0ω  caused by atmospheric drag and orbit ellipticity are not visible. Such 
oscillations are shown in   [3], where results of numerical solution of the spacecraft motion 
equations with a similar control law are presented for a time interval of 6   days.  

  
  

Fig. 2. Spacecraft orientation angles when using control law (12)  
  

Fig. 3. Components and module of the spacecraft gyrostatic moment vector when using control 
law (12)  

  
Fig. 4. Components and module of the spacecraft microacceleration vector  

  
  
  
  
In Fig.   2, the increase in oscillation amplitude, as well as the constant offset of angle 

δ   ≈   0.8° are caused by atmospheric drag, which depends on the position of the Sun relative to 
the spacecraft's orbital plane. This position changes due to the precession of the orbital plane with 



an angular velocity of ~5   °/day. Over a period of approximately 70   days, the value of the constant 
offset of angle δ  practically does not change, the oscillation amplitude varies in the range from 
0.1 to 1.5°. Since the control law (12) does not impose restrictions on the angular position of the 
spacecraft, the values of angles γ , δ , β , shown in Fig.   2, at each moment of time correspond to 
a certain relative equilibrium position of the spacecraft under the action of gravitational and 
aerodynamic moments [19]. One of the possible methods of finding such a position is presented in 
publication   [8]. In this case, to estimate the displacement 0δ  of the angle value δ  an approximate 
analytical dependence  

( )
2

0 E
0 2 2

3 1 0 E

2 ( )
3 ( )

c c c a

c c a

R L x R R
I I R x R R

+ ρ
δ =

− + π + ρ
 ,  

can be used, which was obtained by linearizing the system   (3) in the vicinity of the stationary 
solution   (9). In this linearization, it was assumed that the center of mass of the spacecraft moves 
along a circular orbit of radius 0 Er R R= +  , unchangeable in absolute space, and the incident flow 
velocity is directed tangentially to the spacecraft's orbit [20]. Here E 6378.14R =   km is the radius 
of the Earth taken as a sphere, 0R  is the height of the spacecraft's circular orbit. Table   1 shows 
some values of 0δ  depending on the values of 0R  . The corresponding 0R  values of atmospheric 
density aρ  were taken from GOST R   25645.166-2004 for 10.7 150.F =  
  
Table 1  
 

0R  , km  400  420  440  

aρ  , kg/m 3  3.02·10 -12  2.11·10 -12  1.48·10 -12  

0δ  , deg  1.101  0.801  0.580  

  
In Fig.   3, the displacement of the component 2h  and the modulus | |H  of the gyrostatic 

moment vector is determined by the value of the constant 0h   =   5  N·m·s of the control law   (12). 
As can be seen from the inequalities   (15), the value 0h  affects the size of the stability region of 
the coefficients 1J , 3J , the larger the value of 0h , the larger the size of this region. However, when 
choosing the value of 0h , the specific characteristics and layout of the gyrosystem actuators 
installed on board the spacecraft should be taken into account, so that during the implementation 
of the control law, the intrinsic kinetic moment of each actuator does not approach its limit value 
[20].  

Figure 4 shows that the value of the micro-acceleration vector modulus | |b  does not exceed 
4.1·10 -6   m/s 2 , and the variation region of the vector b  is relatively small. It should be noted that 
the value | |b   <   10 -5   m/s 2 is acceptable when conducting space experiments, particularly in the 
field of materials science [21]. The small size of the vector variation regionb  ( )1| | | |b≈b is an 
additional advantage of the spacecraft's gravitational orientation mode when conducting these 
experiments.  
  

7. SPECTRAL ANALYSIS OF MICRO-ACCELERATIONS  



  
To analyze the level of micro-accelerations occurring on board the spacecraft during the 

implementation of the control law   (12), the paper defines the characteristic oscillation frequencies 
of the vector moduli ab , gb  and b   (1). The frequencies were found using spectral analysis, 

performed according to the following scheme [22]. Let nx , 1,n N= be the values of some variable 
( )x t  of the solution under study at the nodes of a uniform time grid { }nt : ( )n nx x t=  . In all 

examples considered below, the grid step is 1 10n nh t t+= − =  s. Suppose that the function under 
study has the form  
  

0
1

( ) ( cos2 sin 2 )
M

m m m m
k

x t f t f t
=

= α + α π +β π∑    ,  

where 1(0, / 2)mf h−∈  and 0α , mα , mβ , 1,m M=  are constant parameters, and there are no 

identical frequencies among mf
  . The frequencies and amplitudes of individual harmonics in ( )x t  

can be estimated by examining the maxima of the Schuster periodogram —  
  

2 2

* *
1 1

( ) ( )cos2 ( )sin 2
N N

n n n n
n n

I f x x f t x x f t
= =

   
= − π + − π   
   
∑ ∑ ,    *

1

1 N

n
n

x x
N =

= ∑ , 

in the interval 10 / 2f h−< <  . The function ( )I f  has many maxima, from which several of the 
most prominent ones are selected. If the function ( )I f  has such a maximum at the point f∗  , it is 

assumed that f∗  is close to one of the frequencies mf
  , and the value 2 ( ) /I f N∗  is an estimate 

of the amplitude 2 2
m mα +β  of the corresponding harmonic. The Schuster periodogram can be 

conveniently transformed into a form called the amplitude spectrum 1( ) 2 ( )A f N I f−=  . The 
prominent maxima of the function ( )A f  directly estimate the amplitudes of individual harmonics, 
but its maxima are less visually pronounced than the maxima of the periodogram.  

In Fig.   5 shows the amplitude spectra ( )A fba , ( )A fbg , ( )A fb  of values | |ab , | |gb  and 
| |b  respectively. The spectra are presented in the frequency range from 0 to 0.001  Hz, with values 
h   =   10   s and N   =   6.048·10 6 . It is shown that the greatest contribution to the overall level of 
micro-accelerations b  on board the spacecraft when using the law   (12) is made by the component 

ab  with the dominant frequency 4
0 0 2 1.79 10f −= ω π ≈ ⋅  Hz. Such oscillations are caused by the 

influence of the atmosphere. There is also an increase in the oscillation amplitudes of the values 
| |ab  and | |b  at the frequency 4

02 3.58 10f −≈ ⋅  Hz, however, such an increase in amplitudes 
practically does not affect the overall level of micro-accelerations occurring on board b  .  

  
  
  

Fig. 5. Amplitude spectra of the moduli of vectors ab , gb  and b  
  

  



Considering the overall level of micro-accelerations shown in Fig.   4, the small variation 
area of the vector b  and that the micro-acceleration oscillations occur very slowly - with orbital 
frequency, it can be stated that the conditions on board the spacecraft are acceptable for conducting 
space experiments [3,   11].  
  

8. ORBITAL ORIENTATION OF THE SPACECRAFT  
IN THE VICINITY OF THE GRAVITATIONALLY  

STABLE EQUILIBRIUM POSITION  
  

The control law   (8) can be implemented without using a constant value of the gyrostatic 
moment 0h  . Let's denote the equilibrium position (9) at 0 0h =  as (9′). Then the moment cM  , 
acting from the gyro system on the spacecraft body and stabilizing the gravitational orientation 
mode of the spacecraft in the vicinity of the equilibrium position (9′), can be represented as [8]  
  

 0 2( )c hK Kω= − −ω +M ω e H  ,   (17)  
  
where 3( )

, 1( )ij i jK k ω
ω == , 3( )

, 1( )h
h ij i jK k == , ( )

ijk ω , ( )h
ijk , , 1,3i j =  are constant values. The system   (4), 

(5), (17), linearized in the vicinity of the solution   (9′), can be represented as two independent 
subsystems of the third and sixth order [23]:  
  

 ( )3 3 3 3 3 3A B K С= +x x , ( )T3 2 0 2, ,h= ω −ω δx ,  (18)  
  

( )2
0 1 3 2

3

0 3 0
1 0 0
0 0 0

I I I
A

 ω −
 

=  
 
 

 , ( )T3 21 ,0, 1B I= − , ( )3 diag 1,0,1C = , ( )( ) ( )
3 22 22,0,ω hK k k= − ,  

  
 ( )4 4 4 4 4 4A B K C= +x x  , ( )T4 1 3 1 3, , , , ,h h= ω ω γ βx  ,   (19)  

  
( )

( ) ( )
0 2 3 1

2
0 1 2 3 0 1 2 3

0
4

0

0

0

0 0 0 0 0

0 0 3 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

I I I

I I I I I I

A

 ω −
 
ω − ω − 
 −ω=  

ω 
 −ω  ω 

 ,  

  
T

1
4

3

1 0 0 0 1 0
0 1 0 0 0 1
I

B
I

− 
=  − 

 , ( )4 diag 1,1,0,0,1,1C =  ,  

  



( ) ( ) ( ) ( )
11 13 11 13

4 ( ) ( ) ( ) ( )
31 33 31 33

0 0

0 0

ω ω h h

ω ω h h

k k k k
K

k k k k

 − −
=   − − 

 .  

  
In this case, as in section   5, the structure of matrices 3K , 3С , 4K , 4С  implies that 

information about the spacecraft's orientation is not required to form the control of the rotational 
movement of the spacecraft. In this case ( ) ( ) ( ) ( )

12 21 23 32 0k k k kω ω ω ω= = = =  and 
( ) ( ) ( ) ( )
12 21 23 32 0h h h hk k k k= = = =  .  

The characteristic polynomial of the third-order system depends on coefficients ( )
22k ω  and ( )

22
hk  . 

Let's choose them as in section   5, so that this polynomial has a triple real root (3)
jλ = −α , 1,3j =

where 0α >  is the degree of stability. We obtain analytical dependencies  
  

( )
22 3

hk α
= ,    ( ) 2

22
8

3
Ik ω α

= ,    3 1
0

2

I I
I
−

α = ω .  

  
For the considered spacecraft: ( )

22
hk =   3.24∙10 -4   s -1 , ( )

22k ω  =   28.8  N·m·s.  
The values of the coefficients of the sixth-order polynomial will be found as a solution to 

the linear-quadratic regulation problem [24] in the form 1 T
4 4K S B P−= −  , where 6 6P ×∈  is the 

matrix obtained as a result of numerical solution of the algebraic Riccati matrix equation  
 T 1 T T

4 4 4 4 4 4 0PA A P PB S B P C RC−+ − + =  .   (20)  

Here 6 6R ×∈  and 2 2S ×∈  are positive definite matrices of weight coefficients, whose chosen 
values ( )7diag 1,5 10 ,0,0,100,1R = ⋅  , ( )diag 1,1S =  correspond to coefficient values  

( )
11k ω  =   1042.76  N·m·s, ( )

13k ω  =   –1271.81  N·m·s, ( )
11

hk  =   9.60   s –1 , ( )
13

hk  =   0.12   s –1 ,  
( )
31k ω  =   6620.91  N·m·s, ( )

33k ω  =   –3709.13  N·m·s, ( )
31

hk  =   –2.55   s –1 , ( )
33

hk  =   1.54   s –1 .  
  

The corresponding values of the roots of the sixth-degree characteristic polynomial  
  

(4)
1,2λ  =   –1.03∙10 –4   ±   2.10∙10 –3 i   s –1 , (4)

3,4λ  =   –1.14∙10 3−   ±   4.72∙10 4− i  s –1 ,  
(4)
5λ  =   –1.20   s –1 , (4)

6λ  =   –10.00   s –1 .  
  

The degree of stability of a sixth-order polynomial α  =   1.03∙10 -4   s -1 . Thus, the control 
law   (17), with the specified parameter values ( )

ijk ω , ( )h
ijk , , 1,3i j = ,  ensures asymptotic stability 

of the system   (3),   (4) in the neighborhood of the stationary solution   (9′). The presented values 
of the matrix elements R  and S , as well as the method used to find the control law coefficients in 
general, are not the only possible ones. By applying special methods from the mathematical theory 
of automatic control [24], it is probably possible to obtain values of the sixth-order polynomial 
coefficients that provide a greater stability margin and better control quality. However, this 
represents a topic for separate research.  



It should be noted that the control law   (17) is essentially the control law   (12), in which 
the term v is not taken into account, the value 0 0h =  is used, and different notations are used for 

the coefficients: 1ˆK T J−
ω = , 1ˆ

hK T −= .  Therefore 3 1A A= , 3 1B B= , 4 2B B= and matrices 4A , 2A  
have a similar structure. The introduction of new notations was done to present the linearized 
system of equations in the form   (18),   (19) for the convenience of numerically solving 
equation   (20). Thus, the coefficients of the control law   (12) ensuring asymptotic stability of the 
system   (3),   (4) in the neighborhood of the stationary solution   (9) can also be selected as a result 
of solving the linear-quadratic regulation problem using the corresponding matrices of the 
linearized system   (14).  

Let us show that for the found coefficient values  ( )
ijk ω , ( )h

ijk , , 1,3i j =  the law of change of 
the gyrosystem control moment   (17) indeed provides stable orientation of the spacecraft, close to 
gravitational. For this, we will calculate solutions of the system   (3), (4), (17) with initial conditions 

(0) (0) (0) 0γ = δ = β =  , 1 2 3(0) (0) (0) 0h h h= = =  and (16) over a time interval of 8   days. In 

Fig.   6,   7 show graphs of the time dependence of angles γ , δ , β , components ih , 1,3i =  and 
the modulus of the gyrostatic moment | |H  . The graphs do not show the initial section lasting 
1   day, containing the transient process, which is caused by errors in setting the initial angular 
velocity (16). The calculation results show that the control law (17) provides stable orbital 
orientation of the spacecraft, and the gyrostatic moment remains limited. In the steady state, the 
oscillation amplitudes of the angular velocity components are limited by the following values:  
  

1| |ω  <   8∙10 -5 °/s, 2| |ω  <   2∙10 -3 °/s, 3| |ω  <   2∙10 -4 °/s.  
  

  
  
  

Fig. 6. Spacecraft orientation angles when using control law (17)  
  

Fig. 7. Components and modulus of the spacecraft gyrostatic moment vector when using control 
law (17)  

  
  
  
  
In Fig.   6, an increase in the oscillation amplitude of the angle δ  is noticeable, as well as 

its constant offset, which fully corresponds to the results presented in section   6 in Fig.   2. The 
absence of a   term containing a constant value of the gyrostatic moment 0h  in the control law (17) 
does not significantly affect the angular orientation of the spacecraft, its absolute angular velocity, 
and the level of micro-accelerations on board; the difference is visible only in the gyrostatic 
moment graphs. In Fig.   7, it can be seen that when using the control law (17), there is no constant 
offset in the component 2h  and modulus | |H  . The established oscillations of the values γ , δ , β , 

iω , ih , 1,3i =  and | |H  occur with a dominant frequency equal to the orbital frequency 0ω  , which 
corresponds to the influence of aerodynamic drag vacρ v  .  
  



9. ORBITAL ORIENTATION OF A SPACECRAFT  
IN THE VICINITY OF  

A GRAVITATIONALLY UNSTABLE EQUILIBRIUM POSITION  
  
Let us consider the stationary solution (7) of system   (5), which, when the inequalities 1 3 2I I I< <  
are satisfied, will be unstable. To implement the orbital orientation mode of the spacecraft in the 
vicinity of a gravitationally unstable equilibrium position, we define the control law for the gyro 
system in the form [8]  
  
 ( ) ( ) ( )3 2 3 2 0 2c hK K Kθ ω = − × + × − −ω + M E e e E ω E H ,   (21)  

  
where 3( )

, 1( )ij i jK k θ
θ == , 3( )

, 1( )ij i jK k ω
ω == , 3( )

, 1( )h
h ij i jK k == , ( )

ijk θ , ( )
ijk ω , ( )h

ijk , , 1,3i j =  are constant 
values.  

The system of equations (5), (21) admits a stationary solution  
  
 2γ = −δ = π , 0β = , 1 2 3 0 0ω = ω = ω +ω = , 1 2 3 0h h h= = = .  (22)  

  
This solution describes the equilibrium position of the spacecraft in the orbital coordinate system, 
while the orientation of the axes of the system 1 2 3Ox x x  corresponds to (7).  

The system (4), (5), (21), linearized in the vicinity of solution (22), can be represented as 
two independent subsystems of the third and sixth order [25]:  
  
 ( )5 5 5 5 5A B K= +x x , ( )T5 3 0 3, 2,h= ω +ω δ + πx , (23) 

 
( )2

0 1 2 3

5

0 3 0
1 0 0

0 0 0

I I I
A

 ω −
 

= − 
 
 

, ( )T5 31 ,0, 1B I= − , ( )( ) ( ) ( )
5 33 33 33, , hK k k kω θ= − , 

 
 ( )6 6 6 6 6A B K= +x x , ( )T6 1 2 1 2, , 2, , ,h h= ω ω γ − π βx , (24) 
 

( ) ( )
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2
0 3 2 1 0 3 2 1

0 1 3 2

0
6

0

0

0

0 3 0 0 0
0 0 0 0 0
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0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

I I I I I I
I I I

A

 ω − − ω −
 
ω − 
 −ω
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 −ω
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, 

 
T

1
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1 0 0 0 1 0
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I
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I

− 
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,  
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K

k k k k k k k k
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. 

  
In this case, such a form of the linearized system   (23), (24), as well as the structure of matrices 

5K , 6K , are due to the fact that the orbital orientation mode of the spacecraft in the vicinity of a 
gravitationally unstable equilibrium position cannot be implemented without using information 
about the spacecraft orientation. Here ( ) ( ) ( ) ( )

13 23 31 32 0k k k kθ θ θ θ= = = =  , ( ) ( ) ( ) ( )
13 23 31 32 0k k k kω ω ω ω= = = =  

and ( ) ( ) ( ) ( )
13 23 31 32 0h h h hk k k k= = = =  .  

The characteristic polynomial of the third-order system depends on the coefficients ( )
33k θ , 

( )
33k ω   and ( )

33k θ , ( )
33k ω   . Let us choose them, as above, so that this polynomial has a triple real root 

(5)
jλ = −α , 1,3j =  where 0α >  is the degree of stability. We obtain analytical dependencies  

  

( )
3

( ) 3
33 2

0 1 23
h Ik

I I
α

=
ω −

, ( )( ) ( )
333 333 hk I kω = α − , ( )( )( ) 2

3 0 1 233 3k I I Iθ = α −ω − .  

  
For the spacecraft under consideration, we set the value 35.0 10−⋅α =   s –1 , then 

( )
33

2  4.267 10  hk −− ⋅=   s –1 , ( )
33 628.648k ω =  N·m·s, ( )

33 0.849k θ = N·m.  
As in section   8, the values of the sixth-order polynomial coefficients will be sought in the 

form 1 T
6 6K S B P−= −  , where 6 6P ×∈  is a matrix obtained as a result of numerical solution of the 

algebraic Riccati matrix equation T 1 T
6 6 6 6 0PA A P PB S B P R−+ − + =  . Here 6 6R ×∈  and 2 2S ×∈  

are positive definite matrices of weight coefficients, to the selected values of which 
( )diag 1,1,0.01,1,0.01,1R =  , ( )diag 1,1S =  correspond the coefficient values  

  
( )
11 701.26k ω =  N·m·s,  ( )

12 554.17k ω = −  N·m·s,   ( )
11 0.19k θ =  N·m, ( )

12 0.30k θ = −  N·m,   
( )
11 0.17hk = −  s –1 , ( )

12 0.05hk =  s –1 ,  
( )
21 117.55k ω = N·m·s,  ( )

22 128.15k ω = N·m·s,  ( )
21 0.02k θ = N·m, ( )

22 0.09k θ = N·m,   
( )
21 0.04hk = −  s –1 , ( )

22 0.99hk =  s –1 .  
  

The corresponding values of the roots of the sixth-degree characteristic polynomial will 
be –5 –(6)

2
3

1, 8.40 10  1.11 10 i− ⋅ ± ⋅λ =  s –1 , –4 –(6)
4

4
3, 6.52 10  1.47 10 i− ⋅ ± ⋅λ =  s –1 ,  

2(6)
5

–9.83 10− ⋅λ =  s –1 , (6)
6 1.00λ −=  s –1 .  

  
The degree of stability of the sixth-order polynomial α  =   8.40∙10 –5 s –1 . Thus, the control 

law   (21) with the specified parameter values ( )
ijk θ  ( )

ijk ω , ( )h
ijk , , 1,3i j = ensures the asymptotic 

stability of the system   (3),   (4) in the neighborhood of the stationary solution   (22).  



Let us show that for the found coefficient values ( )
ijk θ  ( )

ijk ω , ( )h
ijk , , 1,3i j =  the law of change 

of the gyrosystem control moment   (21) indeed provides the spacecraft orientation close to the 
gravitationally unstable equilibrium position. For this purpose, we will calculate the solutions of 
the system   (3), (4),   (21) with initial conditions (0) 0β = , (0) (0) 2γ = −δ = π , 

1 2 3 0(0) (0) (0) 0.01ω = ω = ω +ω =  °/s, 1 2 3(0) (0) (0)h h h= = = 0 over a time interval of 8   days. In 

Fig.   8,   9 show graphs of time dependency of angles γ , δ , β , components ih , 1,3i =  and the 
modulus of the gyrostatic moment  | |H  . The graphs do not show the initial section with a duration 
of 1   day, containing the transient process, which is caused by errors in setting the initial angular 
velocity. The calculation results show that the control law   (21) provides stable orbital orientation 
of the spacecraft, and the gyrostatic moment remains limited. In the steady state, the amplitudes of 
the angular velocity components' oscillations are limited to the following values:  
  

1| |ω   <   1.5∙10 -4   °/s, 2| |ω   <   1∙10 -4   °/s, 3| |ω   <   2∙10 -3   °/s.  
  

  
  

Fig. 8. Spacecraft orientation angles when using control law (21)  
  

Fig. 9. Components and modulus of the spacecraft gyrostatic moment vector when using control 
law (21)  

  
  
  
  
In Fig.   8, the gradual decrease in the amplitude of oscillations of angles γ , β  is caused by 

the residual influence of the transient process occurring during the first day of spacecraft flight. 
Here, the steady-state oscillations of values γ , δ , β , iω , ih , 1,3i =  and | |H also occur with a 
dominant frequency equal to the orbital frequency 0ω  .  
  

  
  

CONCLUSION  
  

The paper shows that using gyroscopic actuators of the spacecraft rotational motion control 
system, it is possible to implement a mode of long-term orbital orientation of the spacecraft both 
in the vicinity of the gravitationally stable and unstable equilibrium position.  

The corresponding control laws for the intrinsic kinetic moment of the gyrosystem are 
provided. As the main mode for implementing orbital orientation of the spacecraft in the vicinity 
of the stable equilibrium position, the gyrodamping mode is considered, for which the results of 
numerical modeling of microaccelerations occurring on board the spacecraft, as well as their 
amplitude spectra, are presented. It is shown that this mode can be used when conducting space 
experiments during long time intervals.  

Additionally, two more variants of the gyrosystem control law have been considered, which 
provide orbital orientation of the spacecraft in the vicinity of stable and unstable equilibrium 



positions. For all considered variants, a methodology for selecting control law coefficients that 
ensure asymptotic stability of the spacecraft's rotational motion is proposed.  

All gyrosystem control laws proposed in this work allow not only to provide a specified 
orientation of the spacecraft but also to limit the accumulation of gyrostatic moment.  

The results obtained in this work can be used in the preliminary design of spacecraft attitude 
control systems built on the basis of various types of gyroscopic control devices.  
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Figure captions  
  

Fig. 1. General shape of the spacecraft and position of the body-fixed coordinate system  
  
Fig. 2. Spacecraft orientation angles when using control law (12)  
  
Fig. 3. Components and magnitude of spacecraft gyrostatic moment vector when using control law 
(12)  
  
Fig. 4. Components and magnitude of spacecraft microacceleration vector  
  
Fig. 5. Amplitude spectra of vector magnitudes ab , gb  and b  
  
Fig. 6. Spacecraft orientation angles when using control law (17)  
  
Fig. 7. Components and magnitude of spacecraft gyrostatic moment vector when using control law 
(17)  
  
Fig. 8. Spacecraft orientation angles when using control law (21)  
  
Fig. 9. Components and magnitude of spacecraft gyrostatic moment vector when using control law 
(21)  
  
  
  
  
  
  
  
  

  
  
  
  



 
Fig. 1. General shape of the spacecraft and position of the body-fixed coordinate system  

  
  
  
  
  
  
  



 
Fig. 2. Spacecraft orientation angles when using control law (12)  

  
  
  
  



 
Fig. 3. Components and magnitude of spacecraft gyrostatic moment vector  

when using control law (12)  
  



 
Fig. 4. Components and magnitude of spacecraft microacceleration vector  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



 
Fig. 5. Amplitude spectra of vector magnitudes  ,  and  

  
  
  
  
  
  
  
  
  
  
  
  



 
Fig. 6. Spacecraft orientation angles when using control law (17)  

  
  
  
  
  
  
  
  
  
  
  
  
  
  



 
Fig. 7. Components and magnitude of spacecraft gyrostatic moment vector  

when using control law (17)  
  
  
  
  
  
  
  
  
  
  
  
  
  



 
Fig. 8. Spacecraft orientation angles when using control law (21)  

  
  
  
  
  
  
  
  
  
  
  
  
  
  



 
Fig. 9. Components and magnitude of spacecraft gyrostatic moment vector  

when using control law (21)  
  


