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The paper considers various options for implementing the orbital orientation mode of a
spacecraft intended for conducting experiments in microgravity conditions over long time intervals.
The system of gyroscopic controls (gyrosystem) is used as the actuators of the angular motion
control system. The gyrosystem control laws proposed in the paper allow not only to provide a
given orientation of the spacecraft, but also to limit the accumulation of the gyrosystem's own
angular momentum, which significantly increases the duration of time intervals of unperturbed
motion of the spacecraft. The efficiency of the considered control laws in the presence of external
destabilizing disturbing moments acting on the spacecraft is confirmed by the results of numerical
modeling of the equations of motion. The main orientation mode of the spacecraft investigated in
the paper is its orbital orientation using gyrodamping. For this mode, an assessment of the level of
quasi-static microaccelerations occurring on board the spacecraft is carried out, and the results of
their spectral analysis are shown.
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INTRODUCTION

This work is devoted to the calculation of the level of microaccelerations occurring on board
a spacecraft (SC) in its orbital orientation mode, as well as the analysis of their spectral
characteristics. The SC under consideration is intended for conducting research in the field of
microgravity over long time intervals. Currently, many works [1-3] have shown that in the case of
a low-orbit SC, the most suitable for conducting experiments in the field of space materials science
are a circular orbit and SC rest in the orbital coordinate system — orbital orientation. Depending
on the conditions of the experiments, the orbital orientation of the SC can be realized both in the
vicinity of its gravitationally stable equilibrium position and in an unstable one. In any case,
maintaining such orientation requires the expenditure of energy or a working fluid.

One of the possible options for implementing spacecraft orbital orientation may be its
passive orbital orientation, close to gravitationally stable, however, even in this case, due to the
influence of the aerodynamic moment, it may turn out to be unstable and without proper correction
cannot be maintained for a long time [4-5]. Or the level of microaccelerations on board the
spacecraft will be unacceptable for conducting experiments. In this regard, to ensure long-term
orbital orientation of the spacecraft in the presence of the destabilizing effect of the aerodynamic
moment, damping devices can be used [6]. Gyroscopic actuators of the spacecraft control system
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(gyrosystem) can be considered as such devices. To implement damping using a gyrosystem (so-
called gyrodamping), it is sufficient to set an appropriate control law for the inherent kinetic
moment of the gyrosystem (gyrostatic moment of the spacecraft). Such orbital orientation of the
spacecraft can be called semi-passive, i.e., it can be considered active, but the energy costs for its
maintenance are low. Additionally, gyrodamping can be implemented without accumulating the
kinetic moment of the spacecraft, and there will be no energy or propellant costs for unloading the
gyrosystem. Also, the need to unload the gyrosystem reduces the time of undisturbed spacecraft
flight and imposes restrictions on the time of conducting experiments on board, therefore,
implementing the orbital orientation mode without accumulating the gyrostatic moment of the
spacecraft is a very significant advantage. The fundamental possibility of implementing
gyrodamping is shown in the study [7]. In this paper, one of the possible variants of the gyrosystem
control law is proposed, and the results of the numerical solution of the spacecraft motion equations
are presented, confirming the possibility of implementing an orbital orientation mode using
gyrodamping. Also, for the specified mode, an assessment of the level of quasi-static
microaccelerations arising on board the spacecraft is carried out, and the results of their spectral
analysis are shown.

Another possible option for spacecraft orientation for conducting space experiments on
board is directly its orbital orientation in the vicinity of a gravitationally stable or unstable
equilibrium position using a gyrosystem. As mentioned above, when using a gyrosystem, one of
the criteria for its operational efficiency is the rate of accumulation of the gyrostatic moment. This
rate determines the time intervals between gyrosystem unloadings and should be sufficiently small
to provide prolonged segments of spacecraft flight with a low level of microaccelerations. The
corresponding control laws implementing the orbital orientation of the spacecraft with
simultaneous limitation of its gyrostatic moment growth were proposed in publications [7-10]. In
this paper, one of the possible methods for selecting coefficients for each of the control laws
considered in the article [8] is proposed, and the results of numerical solution of the spacecraft
motion equations are presented, confirming the possibility of implementing the used control laws
with the selected coefficient values.

All control laws proposed in this paper can be implemented for most spacecraft (including
promising upper stages) that have a gyrosystem as part of their equipment, and for which it is
required to maintain the orbital orientation mode in a low near-circular orbit for a long period of
time without unloading the gyrostatic moment, which makes the task of implementing the modes
considered in this paper quite relevant.

2. MATHEMATICAL MODELING OF MICROACCELERATIONS

Quasi-static microaccelerations on a low-orbit spacecraft are caused by four reasons: 1)
spacecraft motion relative to the center of mass as a rigid body; 2) gravitational field gradient; 3)
aerodynamic drag; 4) action of force created by control elements. If the spacecraft performs
uncontrolled motion or a gyrosystem is used to control it, then the last of the listed reasons
disappears. In such a case, the quasi-static microacceleration at a given fixed point on board is
described by a simple formula, and to use it, it is sufficient to know only the orbit and rotational
motion of the spacecraft.

Let the spacecraft represent a rigid body, and point Pis rigidly attached to its frame.
Microacceleration b at point P is defined as the difference between the gravitational field
intensity at this point and the absolute acceleration of the latter. The role of vector b in orbital
experiments is analogous to the role of free-fall acceleration in experiments on Earth's surface. In



particular, if a test body with negligibly small mass P , m,, is fixed at point then the reaction force
acting on this body from the spacecraft will be equal to —m,b . The approximate formula for

calculating microaccelerations has the form [11]

b=b,+b,+b,,
b, =dx6+(0xd)xe,
. 1)
g (LP-T o
b, =—|3—r—-p|,
g r3( ) pj
b, =cp,vv.

Here p is the radius vector of point P relative to the center of mass of the spacecraft - point 0.
W is the absolute angular velocity of the spacecraft; the dot above a letter denotes differentiation
with respect to time L, Lg is the gravitational parameter of the Earth; r is the geocentric radius

vector of point O r= |r|; v is the velocity of this point relative to the Earth's surface, v=|v|
; p, 1s the atmospheric density at point O ; c¢ is the ballistic coefficient of the spacecraft. The

terms on the right side of formula (1) correspond to the first three causes of microaccelerations
mentioned above.

Formula (1) was used to calculate real quasi-static microaccelerations that occurred on
spacecraft in flight [1, 2, 11]. It can also be used to predict microaccelerations [3, 12, 13]. In
this case, equations of spacecraft motion are formulated, a motion mode is selected, the solution of
the motion equations simulating this mode is calculated, and along the found solution, the
microacceleration at a given point on board is calculated using formula (1). This is exactly how
formula (1) is applied below.

3. EQUATIONS OF SPACECRAFT MOTION
The spacecraft is considered a gyrostat whose center of mass moves along a geocentric
orbit. To describe its motion, we will use three right-handed Cartesian coordinate systems.

The coordinate system Ox;x,x; associated with the spacecraft is formed by its principal
central axes of inertia. The origin of the system is at the center of mass of the spacecraft - point O.
Somewhat simplifying the model, we assume that the axes of system Ox,x,x; are associated with
characteristic elements of the spacecraft structure (fig. 1). Let us assume that the spacecraft has
the shape of a right circular cylinder with radius R, and height L. with two identical rectangular
plates - solar panels, with a total area of .S; . In order to minimize disturbances during experiments
on board the spacecraft, it is planned to use solar panels without a special drive that orients the
working surfaces of the panels relative to the Sun. The axis Ox; coincides with the axis of the
cylinder. The solar panels are located in the plane Ox,;x; symmetrically with respect to the axis
Ox, , the sides of the panels are parallel to the axes Ox; and Ox; , the axis Ox, is perpendicular

to the plane of the solar panels. The coordinates of the geometric centers of the cylinder and the
solar panel plates will be denoted as (x,,0,0) and (x;,0,0) respectively. Here and below, unless



otherwise specified, the components of vectors and coordinates of points refer to the system
Ox;x,x5 . The basis unit vectors of the system Ox,x,x; will be denoted ase,, e,, e;.

Fig. 1. General shape of the spacecraft and position of the body-fixed coordinate system

In the orbital coordinate system OX;X,X; , the axes OX; and OX, are directed along the
geocentric radius vector of the point @ and the vector of the angular momentum of the spacecraft's
orbital motion, respectively. The basis unit vectors of this system will be denoted a E,, E,, E;.

The origin of the Greenwich coordinate system OpYY,Y; is the point Op located at the
center of the Earth, the plane O1}Y, coincides with the equatorial plane, the axis OY| intersects
the Greenwich meridian, the axis OpY; is directed along the Earth's rotation axis toward the North
Pole. We assume that this system rotates with a constant angular velocity oy around the axis OpY;.

We denote the transition matrix from the orbital system to the Greenwich system as
W =(w )f 21 » where wj; is the cosine of the angle between the axes OgY; and OX; . The elements

of this matrix are expressed through the components of the geocentric radius vector of the point o
and the velocity vector of this point relative to the Earth's surface in the Greenwich coordinate

system. The transition matrices from the system Ox;x,x; to the Greenwich and orbital systems will
be denoted as U = (u; )f o and O = (qi]-)f 1 respectively. Here ¢; =E;-e; , u; and g are the
cosines of the angles that the axis Ox; forms with the axes OgY; and OX; . The following relation
holds: U =WQ .

The matrix Q is parameterized by anglesy, 6 and 3, , which are introduced as follows
[3]. The system Ox;x,x; can be obtained from the system OX,X,X; by three consecutive
rotations: 1) by angle 8+ n/2 around the axis OX, ; 2) by angle B around the new axis OXj; ; 3)
by angle y around the axis OX,, obtained after the first two rotations and coinciding with the axis
Ox; . The elements of the matrix Q are expressed through these angles using the formulas

q;; =—sindcosP, ¢, =cosdsiny +sindsinf3cosy

gy =sinp, g =cospcosy,

qz; =—co0sdcosP, gz, =—sindsiny +cosdsinfcosy,
(2)
g3 =cosdcosy —sindsinPsiny,
g3 =—cosPsiny,

g3 =—sindcosy —cososinPsiny.

The spacecraft motion equations consist of two subsystems. One subsystem of equations
for the vectors F and V describes the motion of the spacecraft's center of mass in the Greenwich



coordinate system, taking into account the non-central nature of Earth's gravitational field and
atmospheric drag [14]. The non-central field is accounted for up to terms of order (16, 16)
inclusive in the expansion of Earth's gravitational potential in a series of spherical functions. The
atmosphere is considered to rotate with the Earth, and its density is calculated according to the
GOST R 25645.166-2004 model. The atmospheric parameters and the spacecraft's ballistic
coefficient are considered constant throughout the entire integration interval of the motion
equations.

The other subsystem describes the spacecraft's motion relative to its center of mass
(rotational motion) and has the form

%?+me:Mé+Mw K=lo+H,

& . 3)
ﬂJr(oxu =0l &-{-(&)XU = —Ogu
dt 1 E%2> dr 2 EY1-

Here, the symbol d / dt denotes the local derivative of a vector in the system Ox,x,x;; K — the

—_ T
angular momentum of the spacecraft in its motion relative to the center of mass; W =(W, Wy, W)
— the absolute angular velocity of the spacecraft; / = diag(/,,1,,1;) — the inertia tensor of the
spacecraft; H = (A,h,,h, )" — the gyrostatic moment of the spacecraft (the intrinsic angular
momentum of the gyro system); M, — the gravitational moment acting on the spacecraft; M, —
the aerodynamic moment acting on the spacecraft; u; and u, — the first and second rows of the

transition matrix ¥ | respectively. The third row of this matrix is u; =u; xu, . The rowsu; and
u, are related by the orthogonality conditions of the matrix U (u; — unit vectors of the axes OpY;

), which are taken into account when setting the initial conditions for these variables.
To close the subsystem of equations (3), we need to add an equation describing the change
in the gyrostatic moment of the spacecraft in the form

1E+mxH=—Mc,m)
dt

where M, — the moment acting from the gyro system on the spacecraft body. Expressions for

M, will be provided below.
The gravitational moment is given by the formula [15] M, = 3“—?(1‘ X fr) .
r

The formula for the aerodynamic moment is given by
Ma :p(VXel) > P :pa (TERczyc |V1 |+Sbyb |V2 |+2Rchyc \]V% +V§) 5

where v, are components of the vector V', i =1,3 . When deriving the last formula, it was assumed

that atmospheric molecules experience a completely inelastic collision when hitting the spacecraft
body [16], and the mutual shadowing of the spacecraft body and solar panels from the incoming
aerodynamic flow was not taken into account. Such simplification is justified because for most
spacecraft movements, the relative duration of time intervals in which this shadowing is significant
is small.



Let us present the numerical values of the parameters of the described model used in
calculations. Spacecraft parameters: m = 6440 kg, I, = 2600 kg m:7, = 11100 kg m
21, = 10900 kg m:,R, = 1.3 m L. = 50 m,S, = 33 m2,x, = -1 mx. = 0.3 m.
The initial conditions for the spacecraft center of mass motion were specified at the ascending node
of the orbit at 09:10:34 UTC on 21.IX.2007. Initial orbital elements: apogee altitude 450 km,
perigee altitude 400 km, inclination 63.0° , argument of perigee latitude 53.5° , longitude of the
ascending node (measured from the mean vernal equinox of the date epoch) 164.0°.
Microaccelerations were calculated at the point P with coordinates (-1 m, 0.7 m, 05 m)
(Fig. 1). This point is located on the inner wall of the spacecraft working compartment,
approximately at its middle. Scientific equipment can be installed near this point. Atmospheric
model parameters: Fj,,; = g, =150, 4, =12.

The initial conditions for equations (3) were set at the same time as the initial conditions
for the orbital motion. This moment served as the time reference point — point =0 .

4. ORBITAL ORIENTATION MODE OF A SPACECRAFT USING GYRODAMPING
First, let's consider the gravitational orientation mode of a spacecraft. Equations (3) are
inconvenient for explaining such a mode and the method of its implementation, but this can be
done using simpler equations that take into account only the main factors. Let's assume that the
orbit of the spacecraft's center of mass is circular and unchanged in absolute space, and only
gravitational torque acts on the spacecraft. In this case, equations (3) can be transformed to the
form

fd)+H+mx(fw+H)=3m§(E3xfE3),

7 =0, —tg(o, cosy —w;siny),

0)2cosy—o)3siny_CO )

8: 0>

cosf

B =, siny+wm;cosy.

In this case, system (5) has 24 stationary solutions in which ® = wyE, , the unit vectors e;

coincide with the unit vectors *+E o bJ= 1,3 , where Wy =+lg/ #* is the mean motion of the
spacecraft (orbital frequency). These solutions describe the equilibrium positions (rest) of the
spacecraft in the orbital coordinate system [15]. Here E; =(g¢31,93,.433 )T , and the values g5, are

expressed through the angles y, & and B by formulas (2).

We shall limit ourselves to considering two stationary solutions of the system (5), given
by the relations:

elz_E3, 62=E2, e3:E1, (6)

elel, 62=E3, e3:_E2 . (7)

When the inequalities /; < I; < I, are satisfied, solution (6) is stable, and solution (7) is unstable

[15]. The stable stationary solution (6) can be used to implement a passive three-axis gravitational
orientation mode of the spacecraft. Further in the text, the stable equilibrium position (6) will be
called the gravitational orientation of the spacecraft.



To implement gyrodamping for the orbital orientation mode of the spacecraft, close to its
gravitational orientation, we define the law of change of the intrinsic kinetic moment of the
gyrosystem in the form [7]

where f”=diag(rl,12,13) ; j=diag(J1,J2,J3) ; Jis T i=1,3 are positive constants; hy is an

i
arbitrary constant. Using the control law (8) for the rotational motion of the spacecraft implies the
presence of angular velocity sensors on board, according to the readings of which the intrinsic
kinetic moment of the gyrosystem changes.

The system of equations (5), (8) admits a stationary solution

This solution also describes the equilibrium position of the spacecraft in the orbital coordinate
system, while the orientation of the system axes Ox;x,x; corresponds to the relations (6). To

study the stability of the stationary solution (9), one can use the theorems of E.A. Barbashin and
N.N. Krasovsky [17]. Let's consider the Lyapunov function [7]

3 3 3 3
1
V= %zlimiz —@ozli@i‘hi "'%@gzliq; + (hz —Zhﬂm}"‘awg (12 —311)"‘
i=1 i=1 i=1 i=1
2 7 \? 2
20 J, Js J;
Its derivative by virtue of the system (5), (8)

. 3 T.h?}
V=— Zith
b

1
is sign-negative.
In the vicinity of the solution (9) with accuracy up to third-order terms of smallness with respect
tO Y,S,B, 0)1,0)2 _®0,®3, hl,h2 _ho,h3 we haVe

1 I I 1
4 :?1(031 ~ o)’ +72((°2 o)’ +?3(0°3 +ogy)’ +5[(12 —I3) g +hy gy +

3 1
+5®3 (,-1,)8° +5[4(12 — 1)@y +hy |ooB® + g (hyy — )+

2 1 \? 2
+l h—1+—(h2 /o) +h—3 :
2\ J, Js J;
The non-trivial conditions for positive definiteness of the written quadratic form are expressed by
the inequalities
If the latter inequalities are satisfied and

L, #1 , (11)

then the intersection of the set ¥ =0 with a sufficiently small neighborhood of the equilibrium
position (9) does not contain entire trajectories of the system (5), (8) other than expressions (9).
This statement is established by the method described in publication [18], through analysis of the



corresponding linearized equations. When inequalities (10), (11) are satisfied, the conditions of
the Barbashin - Krasovsky theorem ([17], theorem 3.2) are met and the equilibrium position (9)
is asymptotically stable. If at least one of the inequalities (10) is satisfied with the opposite sign
and inequality (11) still holds, then the conditions of Krasovsky's theorem ([17], theorem 4.1)
are satisfied and the equilibrium position (9) is unstable [7].

Due to various disturbing factors (orbit ellipticity, influence of aerodynamic moment, etc.),
the system of equations (3) for the considered spacecraft does not have solutions describing its
rest (9) in the orbital coordinate system, however, due to the continuous dependence of the solutions
of differential equations on initial conditions and parameters, these equations admit solutions
which, after recalculating the variables u,;, u,;, i =1,3 into angles vy, & and B will be close to

the rest position (9).

5. CONTROL OF THE ROTATIONAL MOTION
OF A SPACECRAFT

To implement the control law (8), we express the moment M, acting from the gyro system

on the spacecraft body and stabilizing the gravitational orientation mode of the spacecraft in the
vicinity of position (9) in the form

M, =Hxo-T"J(0-ope,)+T" (H-he,) . (12)

The system (4), (5), (12), linearized in the vicinity of the stationary solution (9) splits into two
independent subsystems, which have the form

% = (4 +BK,)xy, x; = (0, 00,88~ ), (13)

0 30i(f,—1)/I, 0

4 =|1 0 0| B =(1/1,,0,-1)", K, =(=J5/1,,0,1/1,),

0 0 0

%, = (4 +B,K,)Xy 5 X5 = (0,05, 7.8 0,05) »  (14)
0 (0o(L, = I3)+h) /I, 0 0 0 -/l

(00(1—1) o)/ I —J5/ Iyt 0 303(L L)/, o/I; 0

4 = 1 0 0 _— 0 o |

0 1 Wy 0 0
0 0 0 0 0
0 0 0 0




5 _(1/11 0 00 -1 0 jT P _(—Jl/r1 0 00 1y, 0 )
Lo Yy, o0 0 -1)772 L 0 —J/ry 00 0 1
The structure of matrices K|, K, implies that information about the spacecraft's orientation
is not required to form the control of its rotational motion. We will choose the values of coefficients
Ji, 1, i= 1,3 in such a way that all roots of the characteristic polynomial of the linearized system

lie in the left half-plane of the complex variable sufficiently far from the imaginary axis. More
precisely, we will consider the quality criterion of the control law (12) to be the degree of stability
of the linearized system (13), (14) — the negative real part of the rightmost root of its
characteristic polynomial. In this case, this polynomial decomposes into polynomials of the third

det| (4, +B,K,) -2 VE; [=0.,

and sixth orders
which are the characteristic polynomials of the first (13) and second subsystems (14)
respectively. Here E; and Ej are identity matrices of the third and sixth orders respectively.

The third-order polynomial depends on the coefficients J,, t, . We choose them so that

. . . a _ . TaA . J
this polynomial has a triple real root A" =—a., j=1,3 whereo >0 is the degree of stability. We
get

3 I,-1
T2:_,J2:8]2,a:0)0 3 1.
o 1,
From the given relations, it is evident that the maximum degree of stability of the first
subsystem (13) is determined only by the moments of inertia of the spacecraft and the height of
its orbit. For the spacecraft under consideration

0, =1.125:10% ¢!, o =9.73-10* ¢!, 1, =3084 ¢, J, = 88000 kr m*,

The sixth-order polynomial contains coefficients b , N and U3 , /3 . Taking into account
the relations (10) for the asymptotic stability of system (14), the following conditions must be
met:

0<J, <(4(12—11)+h—°} 0<J, <(12—13+h—0]. (15)
@y g

Taking the value 74, = 5 N m s, we find the values of J,, J; in the form

Ji 25(4([2_11)"'2_0]:19222 kg m?, J, :%(12_13"'}1—0]:2322 kg m:.
0

o
Let's take the values

where y; =4 N m s, y3=1 N m s. The roots of the sixth-order polynomial are equal to
A3 =-137-10"+£2.0-107 ¢, A5} =-1.37-10 £3.7-107 ¢,



2GSy =-8.61-107"+1.4-107 ¢
The degree of stability of the sixth-order polynomial o« = 1.37-10+ s . Thus, the control
law (12) with the specified parameter values J;, t;, i = 1,3 ensures the asymptotic stability of the
system (3), (4) in the neighborhood of the stationary solution (9).

6. MATHEMATICAL MODELING OF THE
ORBITAL ORIENTATION MODE OF A SPACECRAFT
USING GYRO DAMPING
Let's show that the chosen law of change for the control moment of the gyro system (12)
indeed provides stable orientation of the spacecraft, close to gravitational. For this purpose, we will
calculate the solutions of the system (3), (4), (12) with initial conditionsy(0) =8(0)=p(0)=0

, (0)=h(0)=5N m s, (0)=0 and

®;(0)=m,(0) -, =4(0)=0.01 °/s (16)
over a time interval of 140 days. The values of the corresponding coefficients of the control
law (12) are taken as in the section "Control of spacecraft rotational motion". In Fig. 2-4 show
the graphs of time dependence of anglesy, &, B, components 74, i = 1,3 and the module of the
i=1,3 and the module |b| of the

microacceleration vector. The graphs do not show the initial segment with a duration of 1 day,
containing the transient process caused by errors in setting the initial angular velocity (16) and
initial values of the gyrostatic moment. The calculation results show that the control law (12)
provides stable orbital orientation of the spacecraft, and the gyrostatic moment remains limited. In
the steady state, the amplitudes of oscillations of the angular velocity components are limited by
the following values:
|, [<6-107 °/s, |, —® [<2-107 /s, | @y |<3-10+ °/s.

Due to the selected time scale in Fig. 2-4, oscillations of the corresponding values with

frequencies multiple of ®, caused by atmospheric drag and orbit ellipticity are not visible. Such

gyrostatic moment |H| , as well as components b,

i°

oscillations are shown in [3], where results of numerical solution of the spacecraft motion
equations with a similar control law are presented for a time interval of 6 days.
Fig. 2. Spacecraft orientation angles when using control law (12)

Fig. 3. Components and module of the spacecraft gyrostatic moment vector when using control
law (12)

Fig. 4. Components and module of the spacecraft microacceleration vector

In Fig. 2, the increase in oscillation amplitude, as well as the constant offset of angle
o0 =~ 0.8°are caused by atmospheric drag, which depends on the position of the Sun relative to
the spacecraft's orbital plane. This position changes due to the precession of the orbital plane with



an angular velocity of ~5 ©°/day. Over a period of approximately 70 days, the value of the constant
offset of angle § practically does not change, the oscillation amplitude varies in the range from
0.1 to 1.5°. Since the control law (12) does not impose restrictions on the angular position of the
spacecraft, the values of angles vy, &, B, shown in Fig. 2, at each moment of time correspond to

a certain relative equilibrium position of the spacecraft under the action of gravitational and
aerodynamic moments [ 19]. One of the possible methods of finding such a position is presented in

publication [8]. In this case, to estimate the displacement J, of the angle value 6 an approximate
analytical dependence
2R, Lx,(Ry + Re)p,
3(Iy 1)+ W2, (Ro + Re )P,
can be used, which was obtained by linearizing the system (3) in the vicinity of the stationary

solution (9). In this linearization, it was assumed that the center of mass of the spacecraft moves
along a circular orbit of radius » = R, + R, , unchangeable in absolute space, and the incident flow

0=

velocity is directed tangentially to the spacecraft's orbit [20]. Here Ry =6378.14 km is the radius
of the Earth taken as a sphere, R, is the height of the spacecraft's circular orbit. Table 1 shows
some values of §, depending on the values of R, . The corresponding R, values of atmospheric
density p, were taken from GOST R 25645.166-2004 for F,; =150.

Table 1
Ry ,km 400 420 440
p, ,kg/m> 3.02-10 = 2.11-10 » 1.48-10 2
d ,deg 1.101 0.801 0.530

In Fig. 3, the displacement of the component 4, and the modulus |H| of the gyrostatic
moment vector is determined by the value of the constant 4, = 5 N-m-s of the control law (12).
As can be seen from the inequalities (15), the value 4, affects the size of the stability region of
the coefficients J,, J3, the larger the value of 4, the larger the size of this region. However, when

choosing the value of #,, the specific characteristics and layout of the gyrosystem actuators

installed on board the spacecraft should be taken into account, so that during the implementation
of the control law, the intrinsic kinetic moment of each actuator does not approach its limit value
[20].

Figure 4 shows that the value of the micro-acceleration vector modulus | b | does not exceed
4.1-10 « m/s 2, and the variation region of the vector b is relatively small. It should be noted that
the value |b| < 10 s m/s :is acceptable when conducting space experiments, particularly in the
field of materials science [21]. The small size of the vector variation regionb (| b |=| b, |) is an

additional advantage of the spacecraft's gravitational orientation mode when conducting these
experiments.

7. SPECTRAL ANALYSIS OF MICRO-ACCELERATIONS



To analyze the level of micro-accelerations occurring on board the spacecraft during the
implementation of the control law (12), the paper defines the characteristic oscillation frequencies

of the vector modulib,, b, and b (1). The frequencies were found using spectral analysis,
performed according to the following scheme [22]. Let x,, n= 1, N be the values of some variable
x(t) of the solution under study at the nodes of a uniform time grid {¢,}: x, =x(#,) . In all
examples considered below, the grid step is 2 =t¢,,; —t, =10 s. Suppose that the function under
study has the form

M
x(t)=ayg + Z((xm cos2nf, t+P,, sin2nf, t) ,
k=1

where f,, € (0, h'/2) and 0y, O,, B,, m=1,M are constant parameters, and there are no
identical frequencies among f, . The frequencies and amplitudes of individual harmonics in x(#)
can be estimated by examining the maxima of the Schuster periodogram —

N S ? 1<
I(f)= Z(xn—x*)COSZchtn} +|:Z(xn_x*)8in2nftn ’ x*zﬁzxn’
pr n=l1

n=l
in the interval 0 < f <h™'/2 . The function /() has many maxima, from which several of the
most prominent ones are selected. If the function /( ) has such a maximum at the point f, , it is

assumed that f, is close to one of the frequencies f, ,and the value 2,/I(f,)/ N is an estimate

of the amplitude /a2 +B2, of the corresponding harmonic. The Schuster periodogram can be

conveniently transformed into a form called the amplitude spectrum A(f)=2N"'\JI(f) . The
prominent maxima of the function A( /) directly estimate the amplitudes of individual harmonics,
but its maxima are less visually pronounced than the maxima of the periodogram.

In Fig. 5 shows the amplitude spectra 4y, (f), 4yg(f), 4,(f) of values [b, [, |b, | and
| b | respectively. The spectra are presented in the frequency range from 0 to 0.001 Hz, with values

h = 10 sand N = 6.048-10¢. It is shown that the greatest contribution to the overall level of
micro-accelerations b on board the spacecraft when using the law (12) is made by the component

b, with the dominant frequency f; = @,/2n ~1.79-10"* Hz. Such oscillations are caused by the
influence of the atmosphere. There is also an increase in the oscillation amplitudes of the values
|b,| and |b| at the frequency?2f, ~3.58-10"* Hz, however, such an increase in amplitudes
practically does not affect the overall level of micro-accelerations occurring on board b .

Fig. 5. Amplitude spectra of the moduli of vectorsb,, b, and b



Considering the overall level of micro-accelerations shown in Fig. 4, the small variation
area of the vector b and that the micro-acceleration oscillations occur very slowly - with orbital
frequency, it can be stated that the conditions on board the spacecraft are acceptable for conducting
space experiments [3, 11].

8. ORBITAL ORIENTATION OF THE SPACECRAFT
IN THE VICINITY OF THE GRAVITATIONALLY
STABLE EQUILIBRIUM POSITION

The control law (8) can be implemented without using a constant value of the gyrostatic
moment /4, . Let's denote the equilibrium position (9) at 4, =0 as (9'). Then the moment M, ,

acting from the gyro system on the spacecraft body and stabilizing the gravitational orientation
mode of the spacecraft in the vicinity of the equilibrium position (9"), can be represented as [8]

M, =-K, (0o-0y,)+K,H, 17)

where K, = (/’cig-m))3

i =1 K =(k!§.h)).3 k(w) Q)

l,j:l ’ ijoo
(5), (17), linearized in the vicinity of the solution (9’), can be represented as two independent
subsystems of the third and sixth order [23]:

i,j= 1,3 are constant values. The system (4),

X3 :(A3 +B3K3C3)X3, X3 =(032 _O‘)O)S’hz)T, (18)
0 305(,—1)/I, 0
45 =|1 0 0|, By =(1/1,0,-1)", C; =diag(1,0,1), Ky =(-kL3,0,k),
0 0 0
Xy = (Ay +ByK,Cy) Xy Xy =(031,0)3,Y,B,h1,h3)T , (19)
0 wy(l,-1I;)/1, 0 0 0 0
~1,)/1 0 0 3ey(L-L)/I; 0 0
4, = 1 0 0 —-®, 0 0 ’
0 1 o 0 0 0
0 0 0 0 0 -y
0 0 0 0 @, O

(1/11 0 00 -1 0
4:

T
, C, =diag(1,1,0,0,1,1) .
0 1, 0 0 0 —1) s = diag )



(K D 0 0 kD
4 = .
KK 0 0 KD KD

In this case, as in section 5, the structure of matrices K;, C;, K,, C, implies that
information about the spacecraft's orientation is not required to form the control of the rotational
movement of the spacecraft. In this case A =kP =k =k =0 and
KD =k =60 =1y =0 .

1 2
The characteristic polynomial of the third-order system depends on coefficients A%’ and {2 .

Let's choose them as in section 5, so that this polynomial has a triple real root }»(/.3 )=—a, j=1,3

where o > 0 is the degree of stability. We obtain analytical dependencies

81 ;-1
N

For the considered spacecraft: k%)= 3.24-10+ s+, k{9 = 28.8 N-m:s.

The values of the coefficients of the sixth-order polynomial will be found as a solution to
the linear-quadratic regulation problem [24] in the form K, = —S7]B4T P, where PeR%® is the
matrix obtained as a result of numerical solution of the algebraic Riccati matrix equation

PA,+ A, P—PB,S"'B/P+C,"RC, =0 .  (20)

Here R e R®® and § e R*? are positive definite matrices of weight coefficients, whose chosen
values R = diag(l,S : 107,0,0,100,1) , S =diag(L1) correspond to coefficient values

K = 104276 N'mss, ) = ~1271.81 N'mes, k= 9.60 s, k) = 0.12 s,
KO = 662091 Nemes, k{9 = -3709.13 N-mes, kP = 255 s, k) = 1.54 5.

The corresponding values of the roots of the sixth-degree characteristic polynomial

MY = -1.03-10+ + 2.10-10+i s+, A{) = —1.1410 = + 4.72:10 i s,
A = 120 s, AP = -10.00 s,

The degree of stability of a sixth-order polynomial o« = 1.03-10 + s . Thus, the control
law (17), with the specified parameter values kgg.‘”) , kgg.h), i,j =1,3, ensures asymptotic stability

of the system (3), (4) in the neighborhood of the stationary solution (9’). The presented values
of the matrix elements R and S, as well as the method used to find the control law coefficients in
general, are not the only possible ones. By applying special methods from the mathematical theory
of automatic control [24], it is probably possible to obtain values of the sixth-order polynomial
coefficients that provide a greater stability margin and better control quality. However, this
represents a topic for separate research.



It should be noted that the control law (17) is essentially the control law (12), in which
the term v is not taken into account, the value %, =0 is used, and different notations are used for

the coefficients: K, =7""J, K, =T"'. Therefore 4, = 4,, By = B,, B, = B, and matrices 4,, 4,

have a similar structure. The introduction of new notations was done to present the linearized
system of equations in the form (18), (19) for the convenience of numerically solving
equation (20). Thus, the coefficients of the control law (12) ensuring asymptotic stability of the
system (3), (4)in the neighborhood of the stationary solution (9) can also be selected as a result
of solving the linear-quadratic regulation problem using the corresponding matrices of the
linearized system (14).

Let us show that for the found coefficient values kggw), kggh), i,j= 1,3 the law of change of

the gyrosystem control moment (17) indeed provides stable orientation of the spacecraft, close to
gravitational. For this, we will calculate solutions of the system (3), (4), (17) with initial conditions
¥(0)=38(0)=p(0)=0 , A(0)=h,(0)=h(0)=0 and (16) over a time interval of 8 days. In
i= 1,_3 and
the modulus of the gyrostatic moment |H| . The graphs do not show the initial section lasting

Fig. 6, 7 show graphs of the time dependence of angles y, &, B, components /4

7o

1 day, containing the transient process, which is caused by errors in setting the initial angular
velocity (16). The calculation results show that the control law (17) provides stable orbital
orientation of the spacecraft, and the gyrostatic moment remains limited. In the steady state, the
oscillation amplitudes of the angular velocity components are limited by the following values:

|0)1 | < 810 s, |0)2| < 2-10s°/s, |(D3| < 2-10 +°/s.

Fig. 6. Spacecraft orientation angles when using control law (17)

Fig. 7. Components and modulus of the spacecraft gyrostatic moment vector when using control
law (17)

In Fig. 6, an increase in the oscillation amplitude of the angle & is noticeable, as well as
its constant offset, which fully corresponds to the results presented in section 6 in Fig. 2. The
absence of a term containing a constant value of the gyrostatic moment /4, in the control law (17)
does not significantly affect the angular orientation of the spacecraft, its absolute angular velocity,

and the level of micro-accelerations on board; the difference is visible only in the gyrostatic
moment graphs. In Fig. 7, it can be seen that when using the control law (17), there is no constant

offset in the component /4, and modulus | H| . The established oscillations of the valuesy, &, 3,
o, h,i= 1,3 and | H | occur with a dominant frequency equal to the orbital frequency @, , which

corresponds to the influence of aerodynamic drag cp,vv .



9. ORBITAL ORIENTATION OF A SPACECRAFT
IN THE VICINITY OF
A GRAVITATIONALLY UNSTABLE EQUILIBRIUM POSITION

Let us consider the stationary solution (7) of system (5), which, when the inequalities /; <3 <1,

are satisfied, will be unstable. To implement the orbital orientation mode of the spacecraft in the
vicinity of a gravitationally unstable equilibrium position, we define the control law for the gyro
system in the form [8]

M, =-Kq[(E;xe,)+(esxE,) |- K, (0 -k, )+ K,H, (21)

kP i =13

where K, = (k% )i3,j=1’ K, = (kig-"’) )szl, K, = (kgg-h))szl, kY, Kl i,j=1,3 are constant

j g ooty Ty
values.
The system of equations (5), (21) admits a stationary solution

This solution describes the equilibrium position of the spacecraft in the orbital coordinate system,
while the orientation of the axes of the system Ox;x,x; corresponds to (7).

The system (4), (5), (21), linearized in the vicinity of solution (22), can be represented as
two independent subsystems of the third and sixth order [25]:

0 30i(L,-5L)/I; 0

A=t 0 0L B= (0 Ky =(-kEED D),
0 0 0
% = (4s + BsKs ) Xg» Xg = (0,05,7 —1/2,8,5,h,) (24)
0 wo(I,-5L)/, Bey(L-L)/, 0 0 0
(1, _]3)/12 0 0 0O 0 0

Al 0 1 o o o0 o0 |
0 0 0 0 0 -o
0 0 0 0 ® 0

(1/11 0 0 0 -I ojT
B6: 5

0 1/, 0 0 0 -1



0 0 h h
(KT i 2k -k K ook KT K

6~ ) ) h |
kY kS 2k — gkl kS + ook kY KD

In this case, such a form of the linearized system (23), (24), as well as the structure of matrices
Ks, K¢, are due to the fact that the orbital orientation mode of the spacecraft in the vicinity of a

gravitationally unstable equilibrium position cannot be implemented without using information
about the spacecraft orientation. Here k(9 = k{9 =¥ = k{9 =0 , &(© =kl =1l =1 =0

1 2 3 3
and k% =5V =k = k¥ =0 .

The characteristic polynomial of the third-order system depends on the coefficients k§g),
K and &Y, & . Let us choose them, as above, so that this polynomial has a triple real root

7»(]-5) =—o, j=1,3 where a >0 is the degree of stability. We obtain analytical dependencies

o’
=ty B = (k). K =3{reme (1 1).

For the spacecraft under consideration, we set the value o=35.0- 10° s 1, then
K =—4267-107 s, k¥ =628.648 N-m-s, k{3 =0.849N-m.

As in section 8, the values of the sixth-order polynomial coefficients will be sought in the
form K, =-S _1B6T P , where Pe R%® is a matrix obtained as a result of numerical solution of the

algebraic Riccati matrix equation PA, + A(,T P- PB6S*IB6T P+R=0 .Here ReR" and § e R*?
are positive definite matrices of weight coefficients, to the selected values of which
R =diag(1,1,0.01,1,0.01,1) , S =diag(1,1) correspond the coefficient values

k) =701.26 N-m-s, k&) =—-554.17 N'm's, K =0.19 N'm, £ =-0.30 N-'m,
KW =-017 s+, k¥ =0.05 s,
K =117.55N-m-s, k{2 =128.15N-m's, &Y =0.02N-m, &Y =0.09N-m,
kP =-0.04 s, kP =099 s,

The corresponding values of the roots of the sixth-degree characteristic polynomial will
be A{%) =-8.40-107 £ 1.11-107% s 1, A{) =—6.52-10* + 1.47-10 % s 1,

A =-983.107 s, A® =-1.00 5.
The degree of stability of the sixth-order polynomial oo = 8.40-10 s . Thus, the control

law (21) with the specified parameter values k;e) kgg-m), k;h), i, j=1,3 ensures the asymptotic
stability of the system (3), (4) in the neighborhood of the stationary solution (22).



Let us show that for the found coefficient values klg.e) k;.‘”) , kl-;h), i,j=1,3 the law of change
of the gyrosystem control moment (21) indeed provides the spacecraft orientation close to the
gravitationally unstable equilibrium position. For this purpose, we will calculate the solutions of
the system 3), “4), (21) with initial conditions B(0)=0, v(0)=-8(0)=mn/2,
®;(0) = ,(0) = 0;(0) + ®, =0.01 °/s, h(0)=h,(0)=hs(0) =0 over a time interval of 8 days. In
Fig. 8, 9 show graphs of time dependency of anglesy, &, B, components /;, i =1,3 and the
modulus of the gyrostatic moment |H | . The graphs do not show the initial section with a duration

of 1 day, containing the transient process, which is caused by errors in setting the initial angular
velocity. The calculation results show that the control law (21) provides stable orbital orientation
of the spacecraft, and the gyrostatic moment remains limited. In the steady state, the amplitudes of
the angular velocity components' oscillations are limited to the following values:

loy | < 1510+ °/s, [, | < 110+ /s, |y | < 2:10+ °/s.

Fig. 8. Spacecraft orientation angles when using control law (21)

Fig. 9. Components and modulus of the spacecraft gyrostatic moment vector when using control
law (21)

In Fig. 8, the gradual decrease in the amplitude of oscillations of angles vy, B is caused by
the residual influence of the transient process occurring during the first day of spacecraft flight.
Here, the steady-state oscillations of valuesy, &, B, o;, A, i =1,_3 and |H |also occur with a

dominant frequency equal to the orbital frequency ® .

CONCLUSION

The paper shows that using gyroscopic actuators of the spacecraft rotational motion control
system, it is possible to implement a mode of long-term orbital orientation of the spacecraft both
in the vicinity of the gravitationally stable and unstable equilibrium position.

The corresponding control laws for the intrinsic kinetic moment of the gyrosystem are
provided. As the main mode for implementing orbital orientation of the spacecraft in the vicinity
of the stable equilibrium position, the gyrodamping mode is considered, for which the results of
numerical modeling of microaccelerations occurring on board the spacecraft, as well as their
amplitude spectra, are presented. It is shown that this mode can be used when conducting space
experiments during long time intervals.

Additionally, two more variants of the gyrosystem control law have been considered, which
provide orbital orientation of the spacecraft in the vicinity of stable and unstable equilibrium



positions. For all considered variants, a methodology for selecting control law coefficients that
ensure asymptotic stability of the spacecraft's rotational motion is proposed.

All gyrosystem control laws proposed in this work allow not only to provide a specified
orientation of the spacecraft but also to limit the accumulation of gyrostatic moment.

The results obtained in this work can be used in the preliminary design of spacecraft attitude
control systems built on the basis of various types of gyroscopic control devices.
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Figure captions
Fig. 1. General shape of the spacecraft and position of the body-fixed coordinate system
Fig. 2. Spacecraft orientation angles when using control law (12)

Fig. 3. Components and magnitude of spacecraft gyrostatic moment vector when using control law
(12)

Fig. 4. Components and magnitude of spacecraft microacceleration vector

Fig. 5. Amplitude spectra of vector magnitudesb,, b, and b

Fig. 6. Spacecraft orientation angles when using control law (17)

Fig. 7. Components and magnitude of spacecraft gyrostatic moment vector when using control law
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Fig. 8. Spacecraft orientation angles when using control law (21)

Fig. 9. Components and magnitude of spacecraft gyrostatic moment vector when using control law
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Fig. 1. General shape of the spacecraft and position of the body-fixed coordinate system
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Fig. 2. Spacecraft orientation angles when using control law (12)



. Humc

"

0.02

40 50 &0 i) a0 90 100 110 120

I T I T I T I T

1 L I L L I 1 L I 1 I L
10 20 30 40 50 48] 70 a0 a0 100 110 120 130
s dav

Fig. 3. Components and magnitude of spacecraft gyrostatic moment vector
when using control law (12)



110 140

140

114 1 144

M
==

L 1
40 00

=

Fig. 4. Components and magnitude of spacecraft microacceleration vector



-

A (S ) mic”

%1077

|-,

Fig. 5. Amplitude spectra of vector magnitudes b, , b, and b

P
0.18 025 0.36 0.5 0.75 1
10 x10°%
T T T T T
L e .....ﬂ‘-._. | L
0 0.18 0.25 0.36 0.5 0.75 1
«10°8 X107
’ L] L] I L]
Iwﬁ e L
0 0.18 0.25 0.36 0.5 0.75 1
5.Hz %107



0.1

0.05

a , hail

-0.05

3, hail

I 1 1 I I
i B 7

T
I 1
6 T

T

|

L 1 I i i ]
1 2 3 4 5 5] T

I dav
Fig. 6. Spacecraft orientation angles when using control law (17)




3 < 10 . ; T T : : |
2k | '
: 4 : . | o T
= o | ' |
= I
-2
3 A I I I I
1 2 3 4 S i : :
0.4 T ! ; : | .
o 0.2
E 0 1 I il I . . i | i
T 02 ” | '
0.4 . : I I l I

T




0.1 |
] 90 || |
B
& 89.9 |
9.8 7
89 7 L 1 I I L L
1 2 3 4 5 B Fi )
0.02 T T T T T T
g -
= -0.02 |-, -
z
= -{J.CI4 o
-0.06 -
0.08 L i i 1 L L
1 2 3 4 5 6 T 8
-89 8 T T T T T T
-89.9
!
E G0
e
-90.1 8
0.2 I I I i I L
1 2 3 4 5 & T 8
I dav

Fig. 8. Spacecraft orientation angles when using control law (21)
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