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Abstract. The material presented in the paper continues a series of studies on the 
development of the use of the vector graph method for analyzing the characteristics of complex 
field and plasma structures generated by the Sun in interplanetary space. With a simplified 
approach to describing such systems using statistical methods, the collective processes of 
plasma and field interactions may remain undetected, in particular, complex multicomponent 
structures in the spatiotemporal distribution functions may be missed. The main problem of 
statistical methods is the neglect of the order of the states of the system being studied and the 
loss of information contained in this order. Based on the data blocks obtained by the detectors 
of the WIND apparatus in the CWE research complex and provided by the Coordinated Data 
Analyzes Web database, implementations of graphs for magnetic field induction vectors and 
solar wind particle velocity vectors reconstructed on the basis of experimental samples are 
discussed. The regimes of magnetic storms, the formation of magnetic clouds, and events 
associated with coronal mass ejections, both ICME and CME, are considered. The presented 
new method of synchronized pairs of graphs allows us to move from a phenomenological 
description of the process to a classification of the types of observed and studied multi-
processes based on the structural implementations of graphs. 
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INTRODUCTION 
Solar activity—a key factor in space weather—has a significant impact on our entire 

planetary system. Among various space weather events, the most energy-intensive and directly 
affecting Earth and near-Earth space are coronal mass ejections (CMEs), which can accumulate 
hundreds of millions of tons of solar plasma matter. Enormous clouds of plasma, permeated by the 
force lines of the Sun's dominant magnetic field, are ejected from the Sun's surface into the 
surrounding space at speeds of 300–1500   km/s and higher. Typically, the ejection reaches Earth's 
orbit in 2–3   days [1].  



Earth itself also has a powerful magnetic field, and coronal mass ejections, being solar 
plasma with their own magnetic field, effectively interact with Earth's own magnetic field. The 
flow of charged particles forming the coronal ejection enters the magnetosphere and leads to 
compensatory processes that counteract the invading solar plasma flows. The latter manifests in 
the disturbance of the ring current or auroral region due to the injection of ionospheric current at 
high latitudes. This circumstance leads to the occurrence of a geomagnetic storm (or a series of 
substorms depending on the structure of the ejection). The geoeffectiveness of the disturbance 
depends on many factors and is reflected in the varying intensity of the storm, which can lead to 
serious problems in electrical equipment operation, navigation and communication failures, poses 
a danger to spacecraft and, sometimes, to astronauts. Interplanetary coronal mass ejections 
(ICMEs), formed on the Sun as a result of spontaneous activity in the form of flares and coronal 
mass ejections (CMEs), are one of the main factors of space weather.  

Coronal mass ejections occur in the solar corona, which is very rarefied and is lost against 
the background of regular radiation from the Sun's "surface." Therefore, the evolution of these 
phenomena can only be observed using special instruments—coronagraphs, which was 
implemented in the project of 1975   . OSO -7 [2]. Despite the need for space observations and the 
creation of appropriate equipment, the method of solar coronagraphy is simple, widespread, and 
allows determining the energetics of a large ejection by the size of the shadowing area after or 
directly during the eclipse [3]. However, this observation method does not allow measuring the 
concentration and composition of the solar plasma cloud, or its magnetic field. This task was solved 
with the creation of specialized devices that determine these parameters along with conducting 
coronagraphic studies of the Sun.  

As an example, we can cite the International Solar-Terrestrial Physics program, which aims 
to study the interaction of the solar wind with Earth's magnetic field. Within the project, two 
spacecraft were launched: Wind and Pola r, named according to the regions of near-Earth space in 
which they were to conduct research — the solar wind region and the polar region. The first 
spacecraft, data from which is used in this work, was placed at the Lagrange point L 1 [4,   5]. On 
the Wind spacecraft, to measure the concentration, energy, and velocity of ions and electrons in the 
solar wind zone and shock wave, two Faraday cylinders were installed as part of the SWE 
instrument — a device for analyzing the ion distribution function at 30   energy levels in the range 
from 150   eV to 8   keV, with up to 20 angular readings per charge cell every 92   s. Each sensor 
had a   15° inclination to the rotation plane of the  Wind spacecraft. The circular aperture limited 
aberration effects near the modulator grid and determined the collection area of the collector plates.  

The experiment with the magnetic field on Wind provided data for studying a wide range 
of structure scales and fluctuation characteristics of the interplanetary magnetic field. The main 
research instrument (MFI) was a dual three-axis fluxgate magnetometer mounted on an extended 
boom, which provided nominally one vector of field measurements every 92   s. The instrument 
had a wide dynamic measurement range from ±4 to ±65536   nT for each axis in eight discrete 
ranges, with errors in the corresponding measurement range from 0.001 to 16   nT [6]. The upper 
range allowed for complete testing in Earth's field.  

The purpose of this work is to develop the author's approach to constructing and analyzing 
vector graphs as applied to the magnetic field and velocity components of solar wind particles. 
Compared to coronagraphy, the data obtained in the Wind experiment allow us to examine the 
dynamics of coronal mass ejection parameters passing through the spacecraft's location point. 
When using graph theory methods with synchronization, the data provide an opportunity to identify 
and visualize the dynamics of joint variations in the magnetic field and velocities of particles 
participating in the observed event. As far as known, joint processing of coronal ejection 



parameters has not been conducted before, but it will allow for deeper investigation and 
interpretation of collective processes occurring in the magnetic and kinetic subsystems of the 
heliosphere, including reliably noting transitions between states of these subsystems.  

  
PHASE TRAJECTORIES AND PHASE PORTRAITS  

The interplanetary magnetic field in interaction with solar wind plasma flows represents a 
complex stochastic open system, the evolution of which is determined by many external and 
internal factors, primarily the solar wind particle flux, energetics, and directional pattern of cosmic 
rays. The subject of this research is the spatial-temporal structure of the interplanetary magnetic 
field, the dynamics of which is largely related to the solar wind. The non-stationarity, 
inhomogeneity, and anisotropy of spatial probability distributions for the values of magnetic field 
components and external acting factors practically exclude the application of the classical apparatus 
of non-equilibrium statistical mechanics to describe such systems. Open nonlinear dynamical 
systems typically exhibit collective or group processes initiated by the inhomogeneity and 
anisotropy of the spatial energy distribution; non-stationarity and inhomogeneity of temperature 
characteristic concentrations. As a result of nonlinear interaction in these processes, deep memory 
and spatial long-range action are formed in the system under study. Creating multi-parameter 
models of such systems belongs to tasks of high complexity level, solved under simplifications 
with forced hierarchy of processes occurring in the system [7-10]. The search for solutions in 
classical phase space or in generalized phase space is promising for such tasks.  

The classical phase space uses two types of coordinates - spatial and momentum, and 
preserves the phase volume for conservative Hamiltonian systems. Since the processes under 
consideration are dissipative, it is necessary to move to a generalized phase space that operates 
with higher-order kinematic variables. Let us define a finite-dimensional metric space Ω, whose 

elements are vectors { } ., , ,
T

r v vξ = …






  In the space Ω, let us consider a physical system consisting 

of N kinematic points. Each kinematic point of the system can be associated with a cell of the 
generalized phase space at a given moment of time t . After adding the time axis T to Ω, we obtain 
Ω T , which we will call the generalized phase space-time. Let us select a time interval for analyzing 
the kinematics of the system, assuming that the system of dynamic equations, the time reference 

point t 0 ∈ T and the initial state { }0 0 0, , , Ω.
T

r v vξ = … ∈




    are known. As a result, we define the profile 

of the generalized phase trajectory as follows:  
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It should be noted that in the generalized phase trajectory, all vector quantities are 
dependent, which in some cases allows us to exclude time and move to a phase portrait:  
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We also note some important properties of phase trajectories that allow us to track 
unacceptable states and configurations:  

• A generalized phase trajectory does not exist for every physical system;  
• Only one phase trajectory passes through each point of the generalized space with 

continuous time;  
• Generalized phase trajectories in a space where series of kinematic variables 

converge do not intersect.  



What has been said so far has related to systems that are continuous in time. The situation 
is different with discrete systems, whose mappings in the form of time series for a combination of 
scalar and vector quantities are recorded by monitoring equipment. Since this paper discusses 
vector graphs for vector characteristics, let us discuss the reconstruction of such spatial 
distributions. Let us define a Cartesian coordinate system whose unit vectors coincide with the unit 
vectors of the GSE coordinate system.  

For a given process model, it is possible to construct a phase trajectory based on a discrete-
difference model of the dynamic system. We represent the recorded values of 3D time series 
samples for the components of the interplanetary magnetic field induction vector and the solar wind 
plasma velocity vector in the form:  

 [ ] [ ], , , ,, ,i j k i j kB n V n   (3)  
where ijk determines spatial coordinates, n is the number of the cycle.  

Time derivatives in discrete representation are replaced by difference ratios, and for the first 
orders used in this work, they have the form:  

 [ ] [ ] [ ] [ ] [ ] [ ]1 , 1 .ijk ijk ijk ijk ijk ijkn B n B n n V n V nΦ = − − Ψ = − −   (4)  
It is possible to vary the discretization step and synthesize a discrete-difference model of 

the system under study of arbitrary order. Phase portraits for higher-order kinematic characteristics, 
which are informative when describing processes with long-range action, deep memory, or 
collective degrees of freedom, can be synthesized according to a similar scheme.  

The developed apparatus of vector graphs includes in the analysis complete information 
about both the values and the order of implementation sequences. The initial data format is a 
discretized and quantized multidimensional signal or digital multidimensional signal. The graph is 
built on the basis of experimental samples for field vector projections ,B V

 

 and their combinations. 
Field vectors converge and diverge at the graph nodes, the graph edges allow controlling the 
trajectory profile of the system in the phase subspace and reconstructing the transition tree for a 
specific vector field. By mapping the dependence of the first kinematic variable on the value of the 
argument - the current value of the field vector, we obtain the desired 3D phase trajectory in the 
magnetic subspace. Similarly, it is possible to synthesize phase portraits for higher-order kinematic 
characteristics, which are informative when describing processes with long-range action, deep 
memory, or collective degrees of freedom.  

Selected parameters for graph synthesis:  
• data source — the Wind spacecraft, located at the libration point L 1;  
• analyzed time interval of events — year 2023;  
• time series used are presented in the Coordinated Data Analysis Web (CDAWeb) 

database;  
• sampling interval — 60   s,  
• quantization step of field induction projections — 0.01   nT (the quantization step 

is related to sensor accuracy, registration and smoothing methodology, hardware errors of 
the recorder, overload protection logic);  

• quantization step of plasma particle velocity projections — 0.1   nT or 0.1   km/s, 
depending on the representation;  

• count accumulation intervals for graph synthesis — 1440, 5000, 7200, and 
32000   cycles. The accumulation time scale determines the target scale for displaying the 
dynamic process using a graph.  



Let's define a scale grid of the 3D phase subspace in which graphs of permissible states of 
the interplanetary magnetic field are displayed. A node of the scale grid can be a sink or a source 
in the description of permitted transitions; edges connecting pairs of nodes are generally not limited 
in length and orientation. The peculiarity of the introduced vector graphs allows two directions of 
edges between any pair of nodes and the degeneration of nodes, corresponding to the presence of 
multiple sinks and sources for each of the nodes [11–15].  

The transition between discrete samples and continuous description of recorded signals is 
possible using bilinear transformation or Möbius transformation; linear difference methods cannot 
be used due to strong systematic errors in such mappings. Henceforth, we will consider the state 
subspaces of the magnetic and kinetic subsystems as homogeneous and isotropic. The number of 
available states in the phase subspaces is related to the established upper limit of the observed 
parameter values and the resolution of the recording device.  

  
COMBINED VECTOR GRAPHS OF MAGNETIC  

AND KINETIC SUBSYSTEMS  
As a rule, the theoretical apparatus for describing the kinematics and dynamics of a 

nonlinear, non-stationary, and non-equilibrium system operates with a unified phase space in which 
the physical system under study is analyzed. If such an approach is excessively complex, 
hierarchical models of splitting the original system into groups of subsystems are used, each of 
which has its own phase subspace dimension, has its own relaxation time, guaranteeing the 
transition to equilibrium in the considered subsystems before equilibrium is reached in the system 
as a whole. Reconstruction of the phase portrait and writing a chain of equations describing the 
dynamics are equivalent to finding a solution in the selected subspaces.  

Another mathematical method for analyzing complex structures in phase space is based on 
the analysis of marginal projections of the phase portrait onto a set of planes forming a spatial 
coordinate system. Depending on the correlation characteristics, the degree of spatial coherence, 
and the geometry of the magnetic field wave structures, a spatio-temporal mapping of probability 
distributions and their spatial moments from the first to higher orders becomes available. Such 
mapping has an analogy with the Wigner mapping in phase space for wave beams and pulses and 
a number of quantum mechanical problems.  

The paper uses a third approach, allowing the division of the unified phase space of the 
heliosphere system under study into two subspaces — the magnetic field and the solar wind plasma. 
The process of measuring values for the projections of the magnetic field induction vector and the 
projections of the drift velocity vector of charged solar wind particles is hardware-synchronized by 
unified measurement timing, and their corresponding graphs can be combined into a time-aligned 
pair of distributions. Examples of such pairs are presented in Fig.   1.  

  
  

Fig. 1. Samples of vector graphs of the interplanetary magnetic field (left column) and 
solar wind particle velocity (right column) for quiet magnetic field (top row) and magnetic storm 

mode (bottom row)  
  
  
  
The top row combines graphs for the magnetic field vector and solar wind particle velocity 

vector, constructed for a four-day interval from April 15   to 19  April 2023   , corresponding to an 
undisturbed regime of the interplanetary magnetic field, the spacecraft was in the ⊖ sector of the 



Sun's magnetic field [16]. The determination of the sector sign was performed based on the analysis 
of a week-long time series for the B x component, passed through a low-frequency filter with an 
averaging window of 6000   samples at a discretization step of 60   s. The bottom group of graphs 
refers to the magnetic storm regime in the interval of April 20-24  April 2023   , the spacecraft 
shifted to the positive sector of the Sun's magnetic field ⨁ .  

The multicomponent structure of the solar wind particle flow complicates the methods of 
synthesis and analysis of phase trajectories, primarily due to the separation of phase space regions 
accessible to fast and slow components of the solar wind. In addition to separation in the phase 
space of kinematic variables of the first, second, and higher orders, each component creates its own 
phase portrait, determined by the physical processes of mass ejection sources that give rise to 
magnetic storms, magnetic clouds, as the most common objects of transfer of highly effective 
disturbances in the heliosphere.  

Correct comparison of the structure of several graphs of the same type is possible when 
aligning the spatial scales of component registration. Simplifying the comparison of quantitative 
characteristics of reconstructed graphs for the magnetic field is proposed to be performed using a 
normalized reference surface, which determines the energy scale and orientation of the main axes 
for the reference surface in ellipsoidal approximation [17]. A different situation develops when 
selecting dominant orientations for the solar wind particle flow subsystem. Depending on the 
polarity of the heliosphere's magnetic field, the solar wind particle path takes the form of a spiral 
with a direction dependent on the polarity of the traversed sector of the Sun's magnetic field. In this 
case, each component forms its own phase trajectory, combining it with other partial phase 
trajectories of velocity graphs, creating collective structures during the evolution process.  

VECTOR GRAPHS OF MAGNETIC STORMS IN 2023  
Let's consider a series of magnetic storms recorded during 2023   and associated with flare 

activity. When selecting the analyzed processes, two parameters are significant:  
• time interval for data capture and analysis;  
• absence of significant data loss in the selected interval for both the magnetic field 

vector components and the plasma particle velocity vector components.  
The minimum autocorrelation time from partial time series is typically chosen as the 

intrinsic time scale in the analysis of phase trajectories and graphs. For highly anisotropic stochastic 
processes, the intrinsic times of different components of a composite time series may differ or 
change as new acting factors emerge. Let's consider the properties of the graph in a time interval 
that significantly exceeds the autocorrelation times and includes no more than 5000   samples with 
a 60   second interval, which corresponds to a four-day interval. The condition on the proportion 
of lost records, limited from above by a value of 0.15, is met for 4   events, two in the first and two 
in the second half of 2023   year. The location of the selected intervals on the year's timeline is 
[050,   070], [100,   120], [230,   250] and [300,   320].  

In Fig.   2   and   3 show images of paired vector graphs, with time intervals indicated in the 
captions at the top of each graph. Without considering the details of the graph structures, several 
common features of the synthesized distributions can be identified:  

• all observed population density distributions have a dominant orientation along the 
X axis,  

• "accumulative graphs" for the magnetic induction vector in "cross-section" 
represent a system of quasi-concentric ellipsoids (this image is not shown in the figures, it 
should be observed during the layer-by-layer synthesis of the graph for the IMF vector);  



• graphs for the plasma particle velocity vector are multi-component with areas of 
"cold" and "hot" zones of the solar wind, the number of areas can be larger, for example, 
when a magnetic cloud passes through the heliosphere state control zone;  

• unlike the reference surface for the vector B


 , which has an ellipsoid shape, the 

profile of the graph for  resembles a spiral, the axis of which is close to the X direction. 
The study of the properties of the reference spiral of the solar wind velocity vector graphs 
can be performed using the marginal projections method, discussed in the "Dynamic and 
Statistical Measures of Vector Graphs" section of the article.  

In general, vector graphs under magnetic storm conditions have many common structural 
features that allow assessing the type and geometry of disturbances in the heliosphere state 
produced by external factors.  

  
  
Fig. 2. Vector graphs for the first half of 2023   in the day intervals [050, 070] and 

[100,   120]  
  

Fig.   3. Graphs of vectors for the second half of 2023   in the day intervals [230,   250] and 
[300,   320]  

  
  

VECTOR GRAPHS OF MAGNETIC CLOUDS  
IN THE FIRST HALF OF 2023  

A number of works are devoted to the study of magnetic clouds and their connection with 
ICMEs [18,   19], investigating the geoeffectiveness of such structures, their role in the formation 
of storm events [20-22], and creating dynamic and statistical models that allow predicting the 
stages of origin, development, and destruction of magnetic clouds in interplanetary space [23,   24]. 
In this paper, we consider a set of events related to the formation of magnetic clouds and their 
accompanying structures. Episodes of the analyzed process were selected from catalogs [25,   26] 
with an update date of February   1, 2024   . Table   1 shows the time of disturbance registration 
that generated the event, the start time, and the end time of the observed event. In addition to the 
temporal parameters obtained from observations, a qualitative typification of events is used based 
on the correspondence of the process development to the magnetic cloud model [26].  

  
Table 1. List of events from 03.I.2023 to 20.V.2023 related to the magnetic cloud 

formation process  
Disturbance 
registration, hh:mm  

ICME start  ICME end  Type  

03.I.2023, 21:00  04.I.2023, 02:00  05.I.2023, 22:00  2  
27.II.2023, 10:00  27.II.2023, 20:00  28.II.2023, 17:00  0  
01.II.2023, 00:00  01.III.2023, 09:00  01.III.2023, 21:00  1  
02.III.2023, 09:00  02.III.2023, 09:00  02.III.2023, 22:00  1  
12.III.2023, 06:00  12.III.2023, 09:00  14.III.2023, 02:00  1  
15.III.2023, 04:27  15.III.2023, 21:00  17.III.2023, 07:00  0  
23.III.2023, 05:00  23.III.2023, 14:00  24.III.2023, 07:00  2  
18.IV.2023, 14:02  19.IV.2023, 08:00  21.IV.2023, 02:00  2  



23.IV.2023, 17:38  24.IV.2023, 01:00  25.IV.2023, 19:00  2  
09.V.2023, 22:50  10.V.2023, 12:00  12.V.2023, 06:00  0  
12.V.2023, 06:33  12.V.2023, 12:00  13.V.2023, 21:00  0  
20.V.2023, 10:00  20.V.2023, 10:00  21.V.2023, 16:00  1  

  
The rightmost column defines the "distinctiveness" of the magnetic cloud based on 

registered quantitative parameters using a three-level scale in the presence of an ICME event.  
Type   0 — ICME does not generate a magnetic cloud, the forming structure lacks most of 

the magnetic cloud features, such as slow rotation and local magnetic field enhancement.  
Type   1 — ICME shows signs of field direction rotation, but it lacks some other magnetic 

cloud characteristics, such as field strength enhancement in the magnetic cloud region.  
Type   2 — ICME has clear features of a magnetic cloud.  
The time intervals indicated in Table   1. contain an unacceptably high percentage of data 

gaps; to prevent erroneous deformation of vector graphs of both the magnetic field and solar wind, 
5 events out of 12 considered were left for analysis. Below are the paired vector graphs of events.  

  
  

Fig. 4. Type 0 Event. The plasma flow velocity graph did not form due to partial data loss. The 
magnetic field graph shows multiple fragments of slow rotation.  

  
  
The graph structures presented in Fig.   4-8 should be considered as a qualitative 

demonstration of the method's capabilities. A rigorous quantitative approach requires, in addition 
to hardware synchronization, alignment of the characteristic time scales of magnetohydrodynamic 
processes in the magnetic and kinetic subsystems. The authors previously conducted an analysis of 
such characteristics of the magnetic field induction vector components and solar wind particle 
velocity using topological analysis of time series. A two-fold difference in the intrinsic time scales 
of the magnetic and kinetic subsystems was revealed [27]. Such time scale corrections may be 
needed when reconstructing difference or continuous process equations based on the shape of phase 
portraits, and in no way diminish the significance of graph reconstruction results under conditions 
of hardware synchronization.  

  
  

Fig. 5. Type   1 Event. The plasma flow velocity graph did not form due to partial data loss. The 
magnetic field graph shows pronounced slow rotation of the magnetic field.  

Fig.   6. Type   2. All signs of a magnetic cloud are present.  
  

Fig.   7. Type 2. All signs of a magnetic cloud are present.  
  

Fig. 8. Type 2. All signs of a magnetic cloud are present.  
  

  
DYNAMIC AND STATISTICAL MEASURES OF VECTOR GRAPHS  

Quantitative measures of synthesized vector graphs must be consistent with their geometry 
and provide sufficient information for an unambiguous description of the graph properties and the 



type of process it corresponds to. Depending on the problem being solved, different sets of vector 
graph measures are used. Let's consider two types of parameters: dynamic , describing the general 
geometry of the synthesized graph and the laws of its evolution in phase space, and statistical , 
describing the probability density distributions of the phase trajectory passing through graph nodes 
in a given observation time interval.  

  
Tensor of Population Distribution of Vector Graph Nodes  

Let us define quantitative measures for vector graphs reconstructed from experimental 
samples, based on the graph structure and the corresponding support surfaces of phase portraits or 
attractors of phase trajectories. For magnetic field vector graphs, tensor methods are physically 
justified, allowing detailed information about the geometry of the phase portrait in elliptical 
approximation, the direction of the principal axes, and the invariants of the second rank tensor. We 
will consider the problem in the GSE coordinate system. The coordinates of each cell in the phase 
space will be indexed by three values of quantum numbers, determining the interval values of the 
magnetic field vector projections on the X,Y,Z coordinate axes. The population of each graph node 
is determined by the number of state realizations corresponding to the selected cell — N x,y,z , 
regardless of the direction of passage through each node. Strictly speaking, in addition to the 
specified metrics for the phase space cells, the values of the initial and final time intervals for the 
process under study should be considered, introducing summation limits in expression   (5).  

By analogy with the description of solid body motion, we introduce a second rank tensor 
for the population of states or nodes I b [28,   29]:  
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  (5)  

Here ( i,j,k ) are summation variables; ( x,y,z ) are coordinates of the phase space cell; N x,y,z is the 
number of realizations for the phase space cell ( x,y,z ).  

The diagonal elements of the recorded tensor I xx ,  I yy ,  I zz are often called moments with 
respect to axes X,Y,Z . For the analysis of quantitative characteristics of the considered tensor, the 
property of additivity is important, allowing to distinguish the components of the phase portrait 
related to parallel processes. The symmetry property of the constructed second-rank population 
distribution tensor allows its reduction to a diagonal form in the principal axes of the figure under 
study — X 1 ,X 2 ,X 3 . The values of tensor components recorded in such axes define the principal 
moments related to each other by a group of inequalities:  

 I 1   +  I 2   ≥  I 3 ,  I 2   +  I 3   ≥  I 1 ,  I 1   +  I 3   ≥  I 2 .   (6)  
In analytical geometry, a classification of analyzed spatial distributions is adopted based on 

comparing the values of principal moments:  
• asymmetric top — 1 2 3 1I I I I≠ ≠ ≠  ;  
• symmetric top — 1 2 3I I I= ≠  ;  
• spherical top — I 1   =  I 2   =  I 3 .  

By operating with the orientation of principal axes and values of principal moments, it is 
possible to determine a number of quantitative measures related to the symmetry of the analyzed 



figure, since symmetry properties inherent in the investigated graph should be inherited by its 
tensor measures.  

  
Marginal Projections for Distribution  

of Node Populations in a Vector Graph  
When working with complex 3D profiles of a vector graph, methods operating with 

marginal projections of the graph onto a set of planes formed by the GSE coordinate system basis 
vectors or any additional directions informative for the process under study are effective. Let's 
consider an example of projection onto planes orthogonal to the X,Y,Z axes, which we define by 
pairs of basis vectors belonging to them — ( YZ ) , ( XZ ) , ( XY ). Let the distribution of the number 
of realizations for each node of the registered graph  N x,y,z be given, and projection along the 
direction Z onto the plane ( XY ) be performed. As a result, we obtain a 2D distribution of the 
number of realizations in projection onto three selected mutually orthogonal planes:  
 ( ) ( ) ( ), , , , , ,, , , , , .Z x y k Y x j z X i y z

k j i
P x y N P x z N P y z N= = =∑ ∑ ∑   (7)  

  
On each of the projection planes, we define the components of the first spatial moment 

vector for the 2D distribution as follows [30]:  
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Here and further, the introduced metrics will be written only for one projection Z : ( XY ), 
distributions for projections Y : XZ ) and X : YZ ) can be obtained by cyclic permutation of the 
summation variables. The first spatial moment determines the coordinate values of the geometric 
center of the node population distribution in the vector graph. The profile of the marginal projection 
of the population distribution in elliptical or quadratic approximation is described by a symmetric 
second-rank tensor of the second central spatial moment with components [31]:  
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Various combinations of the three parameters of the second spatial moment allow defining 
a set of metrics for the profile of marginal projections, such as:  

• inclination angles of the major axis of the approximating ellipse;  



• diameters of the approximating ellipse;  
• elongation value;  
• eccentricity value.  

The tilt angle of the major axis of the approximating ellipse is determined as follows:  
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For the diameters of the approximating ellipse, the representation through central spatial 
moments of the second order is valid in the following form:  

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( )2 22 2 2 2 2 2 2
1,2 2 2 sign 4xx yy xx yy xx yy xyD M M M M M M M= + ± − − +   (14)  

The diameters coincide only when the diagonal moments are equal and the off-diagonal 
moment is zero.  

Eccentricity:  
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Elongation:  
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In addition to the described metrics based on central moments of the second order, central 
moments of higher orders can be used for the studied 2D marginal projections, including skewness 
(third order, 9   elements), and kurtosis (fourth order, 16   elements). Quantitative relationships 
between higher-order moments allow determining not only specific parameters but also the type of 
implemented statistical distribution. However, it should be kept in mind that precision decreases 
with increasing order of calculated moments, and systematic errors grow when estimating their 
ratios.  

  
CONCLUSION  

The method of synchronized vector graphs has been applied for the first time for the 
consistent analysis of the interplanetary magnetic field states and solar wind flow. The structure 
and complexity of the graph depend on the duration of the sampling of vector field component 
values, which allows controlling the information capacity of the graph and changing the time 
resolution value of the studied process for a more comprehensive study of its details. Interpreting 
the synthesized vector graph as a phase trajectory, and in some cases as a phase portrait, allows 
employing the apparatus of statistical physics and the theory of dynamical systems [32–35].  

Determining the evolutionary equations for the state of the studied system requires 
synchronous analysis of phase trajectories in the phase subspaces of the magnetic field and solar 



wind particle flow vectors. However, the discussion of rules for combining discrete phase 
subspaces continues to this day. Under such conditions, the proposed empirical approach to 
reconstructing phase trajectories can become a good selection rule for proposed theoretical models. 
The application of vector graphs is physically justified in problems of reconstructing the dynamics 
of processes in interplanetary space and is comparable in informative capacity to the phase 
trajectory of the studied system.  

The accuracy of registration and the discretization step of the available primary time series 
from satellite monitoring are sufficient for the reconstruction of phase trajectories of the magnetic 
field induction vector and the solar wind particle velocity vector in their corresponding subspaces. 
The main portion of systematic reconstruction errors is associated with "dropouts" of series values 
in the used data arrays. Dropout can be synchronous for both vectors, but data losses are mainly 

observed for  components. The selected measures for quantitative description of the structure of 
vector graphs and their marginal mappings have the same computational complexity, inherited 
symmetry types from the graph, and, important for the problems being solved, the property of 
superposition of structural components of the graph node population distribution. This 
circumstance makes it possible to study the structure of a coronal ejection in detail and puts the 
prediction of its evolution in interplanetary space on the agenda.  
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Figure Captions  
  

Fig.   1: Samples of vector graphs of the interplanetary magnetic field (left column) and solar wind 
particle velocity (right column) for quiet magnetic field (top row) and magnetic storm mode 
(bottom row)  
  
Fig.   2. Vector graphs of the first half of 2023   in day intervals [050,   070] and [100,   120]  
  
Fig.   3. Vector graphs of the second half of 2023   in day intervals [230,   250] and [300,   320]  
  
Fig.   4. Type 0 Event. The plasma flow velocity graph did not form due to partial data loss. 
Multiple fragments of slow rotation are present on the magnetic field graph.  
  
Fig.   5. Type   1 Event. The plasma flow velocity graph did not form due to partial data loss. 
Pronounced slow rotation of the magnetic field is present on the magnetic field graph.  
Fig.   6. Type   2. All signs of a magnetic cloud are present.  
  
Fig.   7. Type 2. All signs of a magnetic cloud are present.  
  
Fig. 8. Type 2. All signs of a magnetic cloud are present.  
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