УДК 523.62-726

АНАЛИЗ ДИНАМИКИ ЦУГОВ КОЛЕБАНИЙ МАГНИТНОГО ПОЛЯ И ПОТОКА ИОНОВ СОЛНЕЧНОГО ВЕТРА ПЕРЕД РАМПОМ МЕЖПЛАНЕТНОЙ УДАРНОЙ ВОЛНЫ

© 2024 г. Н. Л. Бородкова*, О. В. Сапунова, Ю. И. Ермолаев, Г. Н. Застенкер

Институт космических исследований РАН, Москва, Россия
*e-mail: borodkova_nl@cosmos.ru
Поступила в редакцию 02.03.2024 г.
После доработки 16.04.2024 г.
Принята к публикации 22.04.2024 г.

По данным плазменного спектрометра Быстрый монитор солнечного ветра (БМСВ), измеряющего энергетические спектры ионов солнечного ветра, дополненных измерениями магнитного поля, исследовались цуги колебаний магнитного поля и потока ионов солнечного ветра, возникающих перед рампом межпланетной ударной волны. Показано, что колебания магнитного поля перед рампом межпланетной ударной волны сопровождаются колебаниями потока ионов солнечного ветра. Проведен подробный анализ отдельных событий и представлены результаты статистического исследования. Показано, что все цуги колебаний магнитного поля имели правостороннюю круговую или эллиптическую поляризацию, что согласуется с характеристиками магнитозвуковых колебаний, соответствующих низкочастотной части вистлеровских колебаний. Получено, что средние значения углов распространения вистлеровских волн относительно среднего направления магнитного поля θ_{kB} и нормали к фронту θ_{kn} составляли 31° и 40°, соответственно. Этот результат позволяет предполагать, что волновые пакеты перед рампом межпланетной ударной волны имели свойства распространяющихся вистлеровских волн. Получено, что, в среднем, с ростом угла распространения вистлеровских волн относительно нормали к фронту ударной волны θ_{kn} уменьшается угол между волновым вектором и направлением магнитного поля, θ_{kR} .

DOI: 10.31857/S0023420624060045, **EDN:** IGIGDM

1. ВВЕДЕНИЕ

Бесстолкновительные ударные волны, несмотря на их широкое распространение во Вселенной, до сих пор недостаточно изучены для того, чтобы четко понимать, какие процессы обеспечивают ускорение и сильный нагрев плазмы на фронте ударной волны в отсутствии столкновения частиц [см., например, 1-4]. Взаимодействие между волнами и частицами рассматривается как один из основных механизмов диссипации энергии на фронте бесстолкновительной ударной волны. Низкочастотные волны излучаются при взаимодействии частиц, отраженных от рампа, с частицами набегающего потока. Особый интерес представляет тип волн, называемых вистлерами, так как они попадают в частотный диапазон, который позволяет взаимодействовать как с ионами, так и с электронами, что делает их важными для передачи энергии между двумя видами частиц плазмы.

Вистлеровские волны, возбуждаемые перед фронтом межпланетной или планетарной ударной волны, — это весьма распространенное явление [см., например, 5—9]. Впервые такие волны были зарегистрированы вблизи околоземной ударной волны по измерениям магнитного поля на спутнике $OGO\ 5\ [10]$. Позднее, они были обнаружены около планетарных ударных волн Меркурия, Венеры и Сатурна [11], а также перед межпланетными ударными волнами [12]. В зависимости от частоты, вистлеровские волны подразделяют на несколько категорий: высокочастотные с частотой $\sim 10^2\ \Gamma$ ц [13], ультранизкочастотные ($\sim 10^{-2}\ \Gamma$ ц) [14] и низкочастотные волны

с частотой, лежащей в диапазоне $10^0 - 10^1$ Гц, т.е. около нижнегибридной частоты [15]. Были обнаружены два типа вистлеровских волн: распространяющиеся и стоячие по фазе в системе ударной волны [16]. Распространяющиеся двигаются под углом к вектору магнитного поля и нормали к ударному фронту в направлении от рампа в невозмущенный солнечный ветер [11]. Стоячие по фазе вистлеровские волны генерируются, когда скорость распространения волны равна проекции скорости солнечного ветра на нормаль к ударному фронту [17]. Они распространяются вдоль направления нормали к фронту ударной волны и могут довольно быстро затухать. Недавно стоячие вистлеровские волны были обнаружены перед ударной волной Меркурия [18]. Вистлеровские волны имеют правостороннюю поляризацию относительно магнитного поля в системе координат спутника, если наблюдатель движется из невозмущенного солнечного ветра в возмущенный. В противном случае вистлеровские волны имеют левостороннюю поляризацию. Они могут быть как одиночными, так и организованными в цуги колебаний. Максимальная амплитуда колебаний наблюдается у ближайших к рампу волн, а при удалении от рампа вистлеровские волны затухают.

Считается, что вистлеровские волны генерируются в подножии рампа ударной волны. Механизм генерации этих волн не до конца ясен. Особый интерес представляет модифицированная двухпотоковая неустойчивость, возникающая между отраженным пучком ионов и налетающими электронами. Результаты экспериментальных исследований [19, 12, 20] и моделирования [21-23] дают основание предполагать, что эта неустойчивость ответственна за генерацию низкочастотных вистлеров. Ионная неустойчивость вейбелевского типа, возникающая в двухкомпонентной плазме со сравнимыми по величине энергосодержанием и степенью анизотропии электронов и ионов, недавно была предложена как возможный механизм генерации вистлеровских волн [24].

Следует отметить, что вистлеровские волны изучались по измерениям магнитного поля. Однако в потоке ионов солнечного ветра перед рампом ударной волны также наблюдались колебания, как одиночные, так и цуги с частотой, близкой к нижнегибридной частоте [25–27]. В работе [26] исследовались волновые пакеты в диапазоне частот 0.5–5.0 Гц, связанные с межпланетными ударными волнами на спутниках Спектр-Р и WIND. Было показано, что длины

волн, идентифицированные по измерениям потока ионов на КА Спектр-Р, хорошо согласуются с найденными значениями длин волн по измерениям магнитного поля на КА WIND. Это подтверждает предположение, что дисперсия косых магнитозвуковых волн является определяющим фактором в формировании волновых цугов колебаний потока ионов перед рампом ударной волны [27, 28].

Для исследования свойств наблюдаемых вистлеров необходимо знать их частоту, волновой вектор ${\bf k}$, поляризацию, а также параметры, характеризующие фронт ударной волны. Это позволяет определить углы между волновым вектором ${\bf k}$, направлением магнитного поля ${\bf B}$ и нормалью к ударному фронту ${\bf n}$, $\theta_{{\bf k}{\bf B}}$ и $\theta_{{\bf k}{\bf n}}$. Большинство вистлеров, наблюдаемых перед межпланетными квазиперпендикулярными ударными волнами, удовлетворяют $\theta_{{\bf k}{\bf B}} \lesssim 30^\circ - 45^\circ$ и $\theta_{{\bf k}{\bf n}} \gtrsim 20^\circ - 45^\circ$ [см., например, 29, 30, 8, 9, 31].

Цель настоящей работы — исследование динамики низкочастотных (<10 Гц) колебаний потока ионов солнечного ветра и магнитного поля, возникающих перед рампом межпланетной ударной волны с числом Maxa $M_{\Delta} \leq M_{crl}$, то есть меньше первого критического значения числа Маха, при котором скорость плазмы за ударным фронтом (в системе координат, связанной с фронтом) сравнивается со значением локальной скорости звука. В работе используются данные измерений с высоким временным разрешением, полученные на разнесенных в пространстве космических аппаратах (КА). По этим данным определяются параметры, характеризующие структуру фронта ударной волны (нормаль и скорость фронта волны, параметр β, угол θ_{Bn} , альвеновское и магнитозвуковое числа Маха), частота, волновой вектор и направление поляризации вистлеровских волн. По определенным параметрам вычисляются длины волн и углы распространения вистлеров относительно направления магнитного поля и нормали к ударному фронту и делаются выводы о стационарности данных колебаний.

2. ДАННЫЕ И МЕТОДЫ ИХ ОБРАБОТКИ

В работе использовались данные, полученные с помощью прибора БМСВ, установленного на КА Спектр-Р. Прибор БМСВ представляет собой спектрометр плазмы для измерения энергетического спектра ионов в диапазоне 0.2—2.8 кэВ/заряд, а также вектора полного потока ионов, переносной скорости (в диапазоне

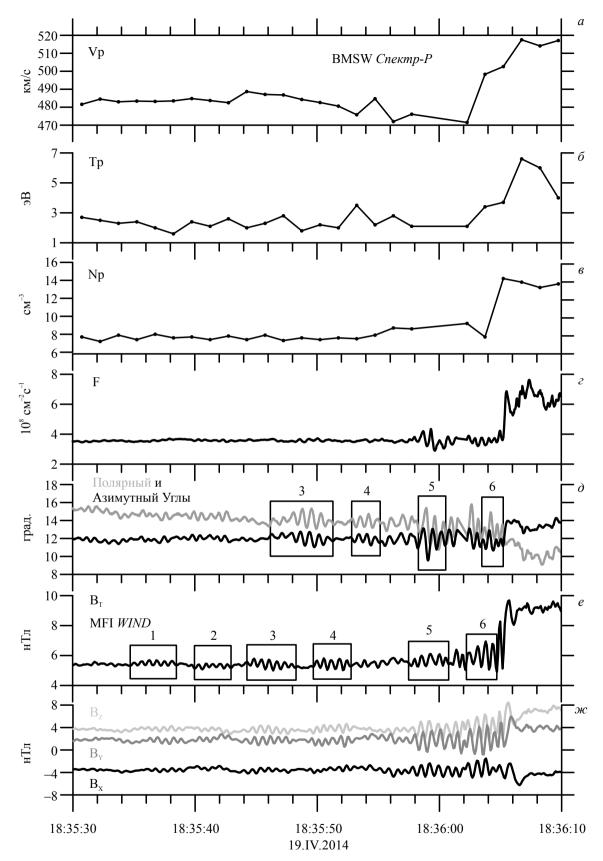
от 200 до 750 км/с), ионной изотропной температуры (от 1 до 100 эВ) и концентрации (от 1 до 100 cm^{-3}).

Прибор БМСВ был разработан для достижения наиболее высокого временного разрешения в определении параметров плазмы солнечного ветра. Величина и направление полного потока ионов солнечного ветра измерялись с разрешением 0.031 с. Гидродинамические параметры плазмы солнечного ветра (скорость, температура и концентрация) определялись с временным разрешением 1 с, а для отдельных интервалов времени — с разрешением 0.031 с. Детальное описание прибора БМСВ приведено в работах [25, 32, 33].

Для анализа поведения межпланетного магнитного поля вблизи фронта ударных волн использовались данные, полученные с помощью магнитометров MFI на KA WIND [34] и MAG на KA DSCOVR (https://www.ngdc.noaa.gov/dscovr/portal/), расположенных в солнечном ветре около первой точки либрации.

Для определения нормали к фронту волны п и скорости ударной волны V_{SH} применялся геометрический метод. Для реализации геометрического метода необходимо наличие в солнечном ветре одновременно как минимум четырех КА. Как правило, в солнечном ветре одновременно с KA *Спектр-Р* находились спутники *SOHO*, WIND, ACE, DSCOVR, THEMIS-B H THEMIS-C. Кроме того, периодически в солнечный ветер выходили спутники Cluster и Geotail. С учетом координат положения спутников в моменты прохождения через них фронта межпланетной ударной волны и времени регистрации ударного фронта приборами этих спутников, а также с предположением, что фронт ударной волны плоский, были определены скорость и направление движения фронта ударной волны для всех событий, зарегистрированных на КА Спектр-Р.

Для определения волнового вектора **k** использовалась следующая процедура. Сначала визуально определялся временной интервал колебаний и из значений компонент магнитного поля вычиталось среднее значение, определяемое методом скользящего среднего. Потом применялся спектральный анализ для определения частотного диапазона, который следовало использовать для фильтрации данных. Отфильтрованные данные обрабатывались с помощью метода минимальных вариаций. В основе этого метода лежит предположение, что плоская поляризованная электромагнитная волна имеет флуктуации электрического и магнитного поля в плоскости,


перпендикулярной к направлению ее распространения. Метод минимальных вариаций позволяет определить три собственных числа λ1, $\lambda 2$ и $\lambda 3$, которым соответствуют три вектора: **n**, вдоль которого имеются минимальные флуктуации; І, в направлении которого флуктуации имеют максимальную амплитуду, и вектор **m**, ортогональный первым двум векторам. Как правило, для определения того, дал ли анализ хорошо определенную плоскую волну с круговой поляризацией, требуется, чтобы для собственных чисел векторов выполнялись соотношения: λ2/ $\lambda 3 \geq 10.0$ и $\lambda 1/\lambda 2$ 1.0 (или <2), если в анализе использовалось менее 50 векторов поля. Для случая, когда $\lambda 2/\lambda 3 \ge 10.0$, но $1.0 < \lambda 1/\lambda 2 \ll \lambda 2/\lambda 3$, волна эллиптически поляризована.

3. ПРИМЕР НАБЛЮДЕНИЯ РАСПРОСТРАНЯЮЩЕЙСЯ ВИСТЛЕРОВСКОЙ ВОЛНЫ ПЕРЕД ФРОНТОМ МЕЖПЛАНЕТНОЙ УДАРНОЙ ВОЛНЫ

Пример поведения параметров плазмы и магнитного поля на фронте межпланетной ударной волны, зарегистрированной 19.IV.2014, приведен на рис. 1. Здесь, сверху вниз, показаны временные профили скорости, температуры, плотности протонов, направление и два угла прихода потока ионов солнечного ветра, зарегистрированные на КА *Спектр-Р* (панели $a-\partial$) и профили магнитного поля, зарегистрированные на KA WIND (панели e-ж). Временное разрешение измерений параметров плазмы — скорости, плотности и температуры протонов солнечного ветра в данном случае невелико и составляет ~1 с, в то время как измерения потока ионов солнечного ветра имеют временное разрешение ~0.03 с. Временное разрешение измерений магнитного поля на KA WIND составляет ~0.09 с.

Координаты КА Спектр-Р в системе координат GSE в это время были $X = -1.5R_{\rm E}, Y = 44~R_{\rm E}, Z = -18R_{\rm E},$ а КА WIND находился в точке с координатами $X = 260R_{\rm E}, Y = -25R_{\rm E}, Z = 20R_{\rm E}.$ Для сопоставления измерений магнитного поля и потока ионов солнечного ветра, относящихся к одному событию, но выполненных на разных спутниках, значения магнитного поля были сдвинуты на 2860.5 с по временной шкале таким образом, чтобы время начала регистрации рампа ударной волны по магнитным измерениям и по потоку ионов совпало.

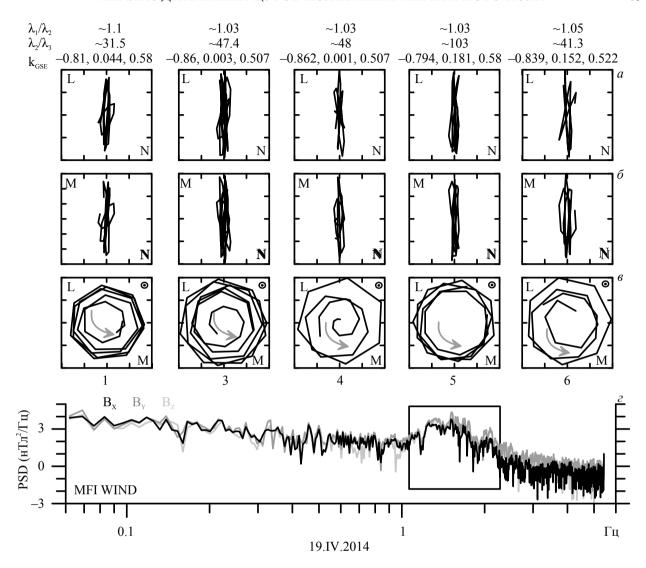
Данный ударный фронт является докритическим, квазиперпендикулярным, так как

Рис. 1. Временные профили скорости, температуры, плотности протонов, величины потока ионов и двух углов прихода, зарегистрированные на КА *Спектр-P* (панели $a-\partial$) и магнитного поля, зарегистрированные на КА *WIND* (панели e-ж) 19.IV.2014. Квадратами отмечены моменты регистрации цугов колебаний.

характеризовался следующими параметрами: Альвеновское число Маха $M_A \approx 1.4$, магнитозвуковое число Маха $M_{MS} \approx 1.2$, угол $\theta_{Bn} \approx 63^\circ$, параметр $\beta_i \approx 0.67$. Скорость распространения фронта волны V_{SH} составила ~517км/с.

На профилях параметров плазмы солнечного ветра и модуля магнитного поля отчетливо выделяется рамп в 18:36:05 UT, на котором происходит резкое скачкообразное возрастание всех параметров плазмы и модуля магнитного поля (см. рис. 1 панели $a-\epsilon$, e) и последовательность из 6 цугов колебаний магнитного поля и, по меньшей мере, 4 цугов колебаний потока ионов, с одинаковыми длинами волн непосредственно перед рампом. Цуги обозначены прямоугольниками и цифрами на рис. 1∂ , е. Хотя на профиле потока ионов достаточно четко прослеживаются два цуга колебаний, остальные цуги ясно просматриваются в колебаниях полярного и азимутального углов потока ионов относительно оси X (рис. 1 ∂). Максимальная амплитуда опережающих колебаний магнитного поля составляет ~20% от величины среднего значения магнитного поля в цуге колебаний. Максимальная относительная амплитуда колебаний потока ионов также составляет порядка 19%, что довольно редкое событие, так как обычно амплитуда колебаний потока ионов невелика. Амплитуда колебаний в цугах при удалении от фронта падает, практически, до нуля: наибольшая амплитуда наблюдается у цуга колебаний вблизи фронта, и наименьшая — у самого удаленного цуга. Это свидетельствует в пользу того, что эти цуги взаимосвязаны и образовались непосредственно на рампе.

Периоды колебаний потока ионов и магнитного поля, несмотря на определенные отличия, в среднем, оказались весьма близкими ~ 0.65 с. Длительность цугов колебаний потока ионов и магнитного поля и моменты их появления близки с точностью до 1-2 с. Такие отличия вполне могут быть объяснены тем, что параметры плазмы и магнитного поля измеряются, как уже отмечалось выше, на различных участках фронта одной и той же межпланетной ударной волны и в различные моменты времени.

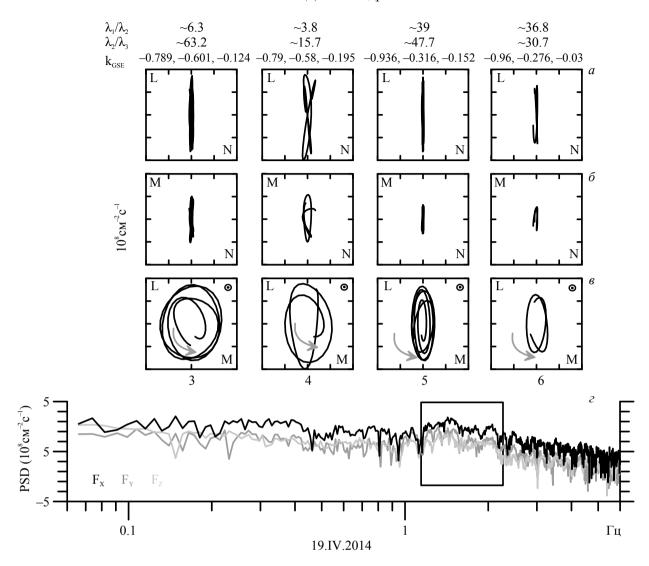

Используя метод минимальных вариаций компонент, для каждого цуга колебаний магнитного поля были определены волновой вектор \mathbf{k} и направление поляризации волны. На рис. 2 показаны годографы компонент магнитного поля \mathbf{B}_1 (\mathbf{B}_n), \mathbf{B}_m (\mathbf{B}_n), \mathbf{B}_1 (\mathbf{B}_m) в **lmn** системе координат (панели a-e) для пяти волновых цугов, номера которых указаны на рис. 2 и соответствуют

обозначениям цугов на рис. 1. На нижней панели 2ε приведены спектры мощности флуктуаций компонент магнитного поля для всего периода наблюдения цугов. Прямоугольником выделен диапазон частот, использованный для последующего фильтрования данных. Над годографами приведены отношения значений собственных чисел $\lambda 1/\lambda 2$, $\lambda 2/\lambda 3$ и волновой вектор для каждого цуга колебаний. Стрелкой на каждом годографе указано направление поляризации волны.

Для всех цугов колебаний отношения собственных чисел составляют $\lambda 1/\lambda 2 \sim 1$ и $\lambda 2/\lambda 3 >$ > 31, что позволяет утверждать, что все цуги колебаний имеют круговую поляризацию. Частота колебаний во всех цугах была одинаковая и составила, в среднем, 1.6 Гп. В среднем, направление волнового вектора внутри каждого волнового пакета совпадает друг с другом. Углы распространения волновых пакетов относительно направления магнитного поля и нормали к ударному фронту составили, в среднем, 23–24° и 45°, соответственно. Вращение компонент магнитного поля указывает на то, что поляризация волновых пакетов была правосторонней. Таким образом, по данным измерений магнитного поля на KA WIND, перед рампом межпланетной ударной волны были зарегистрированы волновые пакеты, являющиеся магнитозвуковыми волнами, соответствующими низкочастотной части вистлеровских колебаний.

Из-за вмороженности магнитного поля в плазму можно ожидать проявление колебаний в потоке ионов солнечного ветра перед фронтом ударной волны. Методика обработки данных, примененная к магнитным измерениям, может быть применена к измерениям потока ионов, что и было сделано. Измерения потока ионов с высоким временным разрешением были обработаны по методике, примененной к магнитным изменениям. На рис. 3, панели a-e, показаны годографы изменения компонент вектора потока ионов в системе координат **lmn**: $F_1(F_n)$, $F_m(F_n)$, $F_1(F_m)$ для четырех цугов колебаний (их номера 3, 4, 5, 6), наблюдаемых на рис. 1. На нижней панели 3г нарисованы спектры мощности колебаний компонент вектора потока ионов; прямоугольником обозначен диапазон частот, по которому фильтровались данные. Вверху приведены отношения значений собственных чисел λ1/ $\lambda 2, \lambda 2/\lambda 3$ и вектор распространения каждого цуга колебаний. Стрелкой на каждом годографе указано направление поляризации волны.

Поляризация волновых пакетов колебаний потока ионов также получилась правосторонней


Рис. 2. Годографы флуктуаций компонент магнитного поля в **lmn-**системе координат (панели a-s) для 5 волновых цугов. Над годографами приведены отношения значений собственных чисел $\lambda 1/\lambda 2$, $\lambda 2/\lambda 3$ и волновой вектор для каждого цуга колебаний, внизу — номер цуга. Стрелкой на каждом годографе указано направление поляризации волны. Панель ε — спектры мощности флуктуаций компонент магнитного поля для всего периода наблюдения цугов. Прямоугольником выделен диапазон частот, использованный для фильтрования данных.

и совпала с поляризацией волновых пакетов колебаний магнитного поля. Отличительной особенностью годографов компонент потока ионов, по сравнению с годографами магнитного поля на рис. 2, является их эллиптичность и сильная вытянутость вдоль одной из осей эллипса. Это также отражено в отношении собственных чисел $\lambda 1/\lambda 2$, которое меняется от 3.8 до 23. Направление распространения колебаний потока ионов отличается от направления волнового вектора. Углы распространения колебаний потока ионов относительно нормали к ударному фронту изменялись от 20° до $3-5^{\circ}$, при приближении к рампу ударной волны. Таким образом, магнитозвуковые волны, соответствующие низкочастотной

части вистлеровских колебаний, могут проявляться в виде колебаний как магнитного поля, так и потока ионов солнечного ветра.

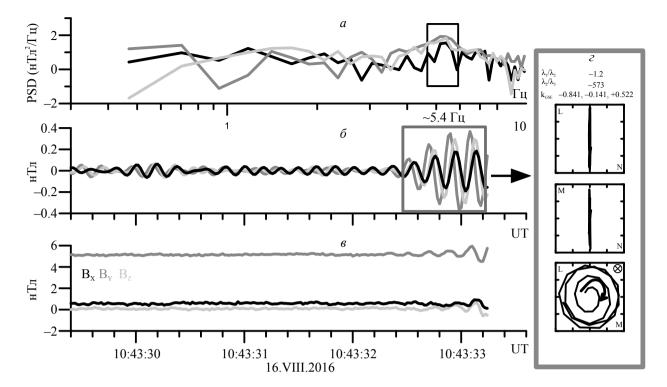
4. ПРИМЕР НАБЛЮДЕНИЯ СТОЯЧЕЙ ВИСТЛЕРОВСКОЙ ВОЛНЫ

Вариации параметров плазмы и магнитного поля, зарегистрированные на КА *СПЕКТР-Р* (панели a—s) и DSCOVR (панели e—s) на фронте межпланетной ударной волны 16.VIII.2016, представлены на рис. 4. В это время КА DSCOVR находился в точке с координатами $X = 248R_{\rm E}$, $Y = 3.7R_{\rm E}$, $Z = -26.5R_{\rm E}$, а КА $C\PiEKTP-P$ имел координаты $X = 17.4R_{\rm E}$, $Y = -20R_{\rm E}$, $Z = 14R_{\rm E}$. На

Рис. 3. Годографы флуктуаций компонент потока ионов в **lmn** системе координат (панели $a-\theta$) для четырех волновых цугов и спектры мощности флуктуаций компонент потока ионов (панель ϵ). Обозначения как на рис. 2.

рис. 4 значения магнитного поля сдвинуты на 4493 с по временной шкале таким образом, чтобы время начала регистрации рампа ударной волны по магнитным измерениям KA DSCOVR в 10:43:33 UT совпало со временем начала регистрации рампа в 11:58:26 UT на KA СПЕКТР-Р.

Резкое и одновременное изменение всех параметров (рис. 4) было связано с прохождением рампа межпланетной ударной волны. Перед рампом наблюдались колебания скорости, температуры и концентрации протонов и магнитного поля с одинаковыми периодами колебаний. Причем по параметрам плазмы можно выделить 2 колебания, а по магнитному полю — 5 колебаний, затухающих с удалением от рампа. Подобное различие может быть объяснено тем фактом, что сравниваемые измерения проводились

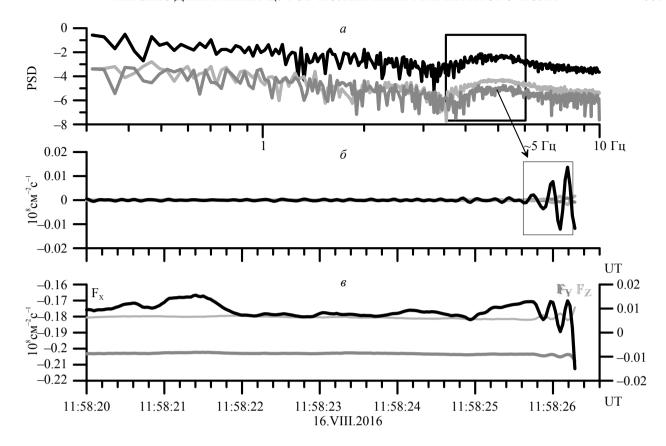

на разных участках фронта межпланетной ударной волны.

Данный ударный фронт характеризовался следующими параметрами: Альвеновское число Маха $M_A \approx 2.1$, угол $\theta_{Bn} \approx 72^\circ$, параметр $\beta_i \approx 1.7$. Нормаль к фронту волны \mathbf{n} , определенная с помощью геометрического метода, составила $\mathbf{n} = (-0.84, -0.15, 0.52)$.

С использованием описанной выше методики обработки данных по измерениям магнитного поля было определено направление распространения волны и ее поляризация. На рис. 5 показаны измеренные компоненты магнитного поля (панель θ) и отфильтрованные вариации этих компонент (панель δ). Спектры мощности флуктуаций компонент магнитного поля для периода наблюдения колебаний,

Рис. 4. Временные профили скорости, температуры, плотности протонов солнечного ветра, зарегистрированные на КА *СПЕКТР-Р* (панели a-s) и профили магнитного поля, зарегистрированные на КА *DSCOVR* (панели e-scolored). Квадратами отмечены моменты регистрации цугов колебаний.

Рис. 5. Панель a — спектры мощности флуктуаций компонент магнитного поля; δ — отфильтрованные вариации компонент магнитного поля; ϵ — измеренные компоненты магнитного поля; ϵ — годографы вариаций компонент магнитного поля. Обозначения как на рис. 2.

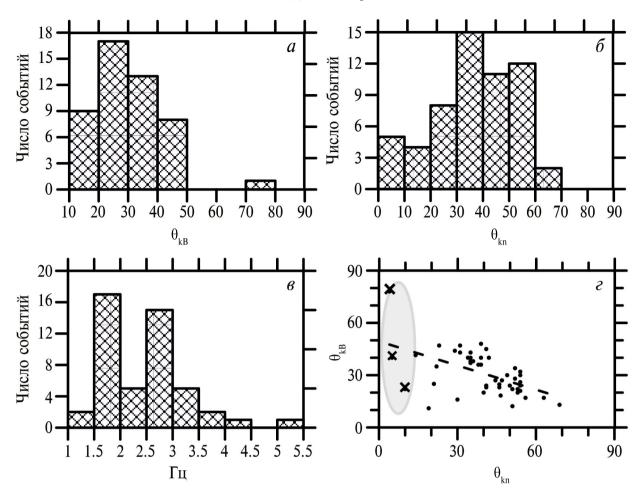

на которых прямоугольником выделен диапазон частот, использованный для фильтрования данных, показаны на панели а. Годографы изменения компонент магнитного поля, волновой вектор и отношения собственных чисел представлены на панели г. Полученные отношения собственных чисел позволяют с высокой долей достоверности утверждать, что цуг колебаний имеет круговую поляризацию. При движении внутри цуга годограф компонент магнитного поля испытывает круговое правостороннее вращение относительно среднего направления магнитного поля в цуге. Углы распространения цуга колебаний относительно направления магнитного поля и нормали к ударному фронту составили 70° и 4°, соответственно. Волновой вектор оказался параллельным вектору нормали к фронту ударной волны, то есть цуг колебаний распространялся вдоль направления нормали к ударной волне, а не вдоль магнитного поля. Согласно публикации [17], это признак стоячей магнитозвуковой волны, соответствующей низкочастотной части вистлеровских колебаний.

Следует отметить, что коррелированные колебания скорости, температуры и плотности солнечного ветра перед рампом этой межпланетной

ударной волны представляют собой проявления стоячей магнитозвуковой волны. Однако построить годографы компонент потока ионов, подобно тому, как это было сделано для компонент магнитного поля на рис. 5, не получилось. На рис. 6 показаны измеренные компоненты потока ионов (панель ϵ), их фильтрованные вариации (панель δ) и спектры мощности флуктуаций компонент потока ионов (панель a). Прямоугольником отмечен цуг колебаний потока ионов. Видно, что поток ионов солнечного ветра имеет радиальное течение. Максимальные флуктуации потока ионов наблюдаются в радиальной компоненте, при этом флуктуации всех компонент потока ионов имеют весьма малую амплитуду. Кроме того, отсутствие сдвига по фазе между колебаниями компонент потока ионов в данном случае не позволяет найти плоскость, в которой колебания имеют круговую или эллиптическую поляризацию.

5. СТАТИСТИКА НАБЛЮДЕНИЙ

Для анализа динамики цугов колебаний магнитного поля, возникающих перед рампом ударной волны, необходимо знать углы между волновым вектором \mathbf{k} , направлением магнитного поля \mathbf{B} и нормалью к ударному фронту \mathbf{n} , $\theta_{\mathbf{kB}}$ и $\theta_{\mathbf{kn}}$.


Рис. 6. Панель a — спектры мощности флуктуаций компонент потока ионов; δ — отфильтрованные вариации компонент потока ионов; δ — измеренные компоненты потока ионов.

Первый угол важен для понимания взаимодействия между волнами и частицами, а второй для взаимодействия с ударной волной [см., например, 1, 3, 35, 36]. Для статистического исследования было выделено 48 цугов колебаний магнитного поля, которым соответствовали колебания потока ионов перед рампом 10 межпланетных ударных волн. С помощью метода минимальных вариаций, использованного для обработки флуктуаций компонент магнитного поля в каждом цуге колебаний, были вычислены направление волнового вектора и его поляризация. При этом для всех цугов колебаний выполнялись отношения собственных чисел $\lambda 1/\lambda 2 < 2$ и $\lambda 2/\lambda 3 > 10$. Для всех цугов колебаний магнитного поля были определены частоты колебаний и посчитаны углы θ_{kB} и θ_{kn} . Получено, что все цуги колебаний имели правостороннюю круговую или слегка эллиптическую поляризацию, что подтверждает результаты предыдущих исследований [7, 12, 18, 19].

На рис. 7 приведены гистограммы распределения углов θ_{kB} (панель a), θ_{kn} (панель δ) и частоты колебаний в цугах (панель δ), а также зависимость между углами θ_{kB} и θ_{kn} (панель δ).

Рассчитанные значения углов распространения волновых пакетов относительно направления магнитного поля θ_{kB} изменялись в диапазоне от 10° до 50° за исключением одного события, для которого этот угол оказался порядка 70°. Рассчитанные значения углов распространения волн относительно нормали к ударному фронту θ_{kn} варьировались от 0° до 70°. Средние значения углов θ_{kB} и θ_{kn} составляли 31° и 40°, соответственно. Эти результаты позволяют предположить, что волновые пакеты перед рампом межпланетной ударной волны распространялись, в среднем, под углом и к магнитному полю, и к нормали к фронту ударной волны, то есть большая часть их имела свойства распространяющихся вистлеровских волн.

Гистограмма распределения частоты колебаний в волновых пакетах представлена на рис. 7в. Частота колебаний в волновых пакетах менялась от 1 до 5.5 Гц при среднем значении 2.5 Гц и лежала около нижнегибридной частоты. Большая часть волновых пакетов имела почти постоянную частоту колебаний, не уменьшающуюся с расстоянием до рампа.

Рис. 7. Гистограммы распределения: a — углов θ_{kB} ; δ — углов θ_{kn} ; ϵ — частоты колебаний в цугах; ϵ — зависимость между углами θ_{kB} и θ_{kn} .

Зависимость между углами распространения вистлеровских волн относительно направления магнитного поля и нормали к фронту ударной волны, $\theta_{kR}(\theta_{kn})$, показана на рис. 7 ϵ . Штриховой линией на рисунке дана аппроксимация экспериментальных значений. Видно, что экспериментальные значения могут быть удовлетворительно аппроксимированы линейной зависимостью. Видно, что, в среднем, с ростом угла распространения вистлеровских волн относительно нормали к фронту ударной волны θ_{kn} уменьшается другой угол θ_{kB} несмотря на разброс точек. Три события, отмеченные крестиками, являются стоячими вистлеровскими волнами, у которых волновой вектор направлен параллельно вектору нормали к фронту ударной волны.

Колебаниям магнитного поля перед рампом межпланетной ударной волны соответствуют колебания потока ионов солнечного ветра. Длины волн колебаний потока ионов и магнитного поля, в среднем, оказались весьма близкими друг к другу [37]. Все это позволило применить

методику обработки магнитных измерений к измерениям потока ионов. Однако амплитуда колебаний потока ионов перед рампом ударной волны обычно невелика по сравнению с амплитудой колебаний магнитного поля и имеет максимальные значения в радиальной компоненте. Максимальная амплитуда колебаний потока ионов для событий, отобранных для данного исследования, наблюдалась в событии 19.IV.2014, при этом абсолютные значения потока ионов были небольшими. И хотя поляризация волновых пакетов колебаний потока ионов совпала в данном случае с направлением поляризации цугов колебаний магнитного поля, годографы компонент потока ионов оказались эллиптически вытянутыми по сравнению с годографами компонент магнитного поля. Для остальных событий годографы компонент потока ионов имели сильно вытянутую форму эллипса, что не позволило достоверно определить направление их распространения.

Дата	Время, UT	$\theta_{\mathbf{Bn}}$ град.	V_{sh} KM/c	$M_{ m A}$	β_i
23.IV.2012	03:20:50	68	414	2.6	0.94
18.V.2013	01:05:38	75	501	1.3	0.44
22.VIII.2013	19:15:03	30	471	2.5	0.77
29.X.2013	10:43:19	58	351	1.4	0.43
19.IV.2014	18:36:05	63	517	1.3	0.67
20.IX.2015	06:05:06	78	550	2.1	0.86
16.VIII.2016	11:58:26	72	310	2.1	1.7
12.X.2016	22:13:04	31	431	3.1	0.7
09.XI.2016	06:53:57	72	347	1.92	0.47
09.VII.2017	00:04:01	75	351	2.8	0.36

Таблица 1. Параметры, характеризующие фронт анализируемых межпланетных ударных волн

6. ЗАКЛЮЧЕНИЕ

По данным прибора БМСВ, установленного на спутнике *СПЕКТР-Р*, дополненных измерениями магнитного поля на KA *WIND* и *DSCOVR*, был проведен анализ динамики цугов колебаний магнитного поля и потока ионов солнечного ветра, возникающих перед рампом межпланетной ударной волны. Для этого были выделены 10 межпланетных ударных волн, перед фронтом которых наблюдались 48 цугов колебаний магнитного поля, которым соответствовали одновременные колебания потока ионов солнечного ветра. В табл. 1 представлены вычисленные параметры фронтов этих межпланетных ударных волн.

Все ударные волны, кроме двух, были квазиперпендикулярными, с числами Маха МА, варьирующимися от ~1.3 до 3.1, и параметром β_i , лежащим в диапазоне значений от ~0.36 до 1.7. Для всех цугов колебаний магнитного поля были вычислены направление волнового вектора и его поляризация, определены частоты колебаний и величины углов θ_{kB} и θ_{kn} .

Показано, что все цуги колебаний имели правостороннюю круговую или эллиптическую поляризацию, что согласуется с характеристиками магнитозвуковых колебаний, соответствующих низкочастотной части вистлеровских колебаний [5, 7, 19]. Среднее значение частоты колебаний в цугах находилось около 2.5 Гц. Средние значения углов θ_{kB} и θ_{kn} составили 31° и 40°, соответственно. Полученный результат указывает на то, что волновые пакеты перед рампом межпланетной ударной волны распространялись преимущественно наклонно как по направлению к нормали к фронту ударной волны, так и

к магнитному полю, что совпадает с выводами, сделанными в работах [7, 9, 11].

Получено, что, в среднем, с ростом угла распространения вистлеровских волн относительно нормали к фронту ударной волны θ_{kn} уменьшается угол между волновым вектором и направлением магнитного поля, θ_{kB} , что удовлетворительно совпадает с выводами работы [18].

Показано также, что колебания магнитного поля перед рампом межпланетной ударной волны сопровождаются колебаниями потока ионов солнечного ветра. Их амплитуда невелика по сравнению с амплитудой колебаний магнитного поля и имеет максимальные значения в радиальной компоненте в ближайшем к рампу цуге колебаний. Таким образом, низкочастотные вистлеровские колебания, наблюдающиеся обычно в магнитном поле, могут проявляться в виде колебаний потока ионов солнечного ветра.

БЛАГОДАРНОСТИ

Авторы выражают признательность NASA CDAWEB за возможность использования данных о параметрах плазмы и магнитного поля, измеренных на спутниках WIND, DSCOVR.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда № 22-12-00227, https://rscf.ru/project/22-12-00227/.

СПИСОК ЛИТЕРАТУРЫ

 Sagdeev R.Z. Cooperative Phenomena and Shock Waves in Collisionless Plasmas // Rev. Plasma Phys. 1966. V. 4. Art.ID. 23.

- Coroniti F.V. Dissipation discontinuities in hydromagnetic shock waves // J. Plasma Phys. 1970. V. 4. Art.ID. 265. DOI: 10.1017/S0022377800004992
- 3. *Tidman D.A., Krall N.A.* Shock Waves in collisionless plasmas // J. Plasma Physics. V. 8. Iss. 1. 1972. https://doi.org/10.1017/S0022377800006978
- Kennel C.F., Edmiston J.P., Haeda T. A quarter century of collisionless shock research // Collisionless Shocks in Heliosphere: A Tutorial Review // Geophysical Monograph Series. Washington, DC: American Geophysical Union. 1985. V. 34. P. 1–36. doi:10.1029/GM034
- Mellott M.M., Greenstadt E.W. The structure of oblique subcritical bow shocks: ISEE-1 and 2 observations // J. Geophys. Res. 1984. V. 89. P. 2151–2161. https:// doi.org/10.1029/JA089iA04p02151
- 6. Farris M.H., Russell C.T., Thomsen M.F. Magnetic Structure of the Low Beta, Quasi-Perpendicular Shock // J. Geophys. Res. 1993. V. 98. P. 15285—15294. https://doi.org/10.1029/93JA00958
- 7. Wilson III L.B., Koval A., Szabo A. et al. Revisiting the structure of low-Mach number, low-beta, quasi-perpendicular shocks // J. Geophys. Res. 2017. V. 122. Iss. 9. P. 9115–9133. https://doi.org/10.1002/2017JA024352
- 8. Ramírez Vélez J.C., Blanco-Cano X., Aguilar-Rodriguez E. et al. Whistler waves associated with weak interplanetary shocks // J. Geophys. Res. 2012. V. 117. Art.ID. A11103. DOI: 10.1029/2012JA017573
- 9. Kajdič P., Blanco-Cano X., Aguilar-Rodriguez E. et al. Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections // J. Geophys. Res. 2012. V. 117. Art.ID. A06103. DOI: 10.1029/2011JA017381
- Heppner J. P., Sugiura M., Skillman T.L., et al. OGO-A magnetic field observations // J. Geophys. Res. 1967. V. 72. Iss. 11. Art.ID. 5417.
- 11. Russell C.T. Upstream whistler-mode waves at planetary bow shocks: A brief review // J. Atmospheric and Solar-Terrestrial Physics. 2007. V. 69(14). P. 1739–1746. https://doi.org/10.1016/j. jastp.2006.11.004
- Wilson L.B. III, Koval A., Szabo A. et al. Observations of electromagnetic whistler precursors at supercritical interplanetary shocks // Geophys. Res. Lett. 2012. V. 39. Art.ID. L08109. DOI: 10.1029/2012GL051581
- 13. *Tokar R.L., Gurnett D.A.* The propagation and growth of whistler mode waves generated by electron beams in Earth's bow shock // J. Geophys. Res. 1985. V. 90. P. 105–114. DOI: 10.1029/JA090iA01p00105
- 14. Fairfield D.H. Bow shock associated waves observed in the far upstream interplanetary medium // J. Geophys. Res. 1969. V. 74. P. 3541–3553.

- 15. Fairfield D.H., Feldman W.C. Standing waves at low Mach number laminar bow shocks // J. Geophys. Res. 1975. V. 80. Art.ID. 515. https://doi.org/10.1029/JA080i004p00515
- 16. *Russell C.T., Farris M.H.* Ultra low frequency waves at the Earth's bow shock // Advances in Space Res. 1995. V. 15. Iss. 8–9. P. 285–296. https://doi.org/10.1016/0273-1177(94)00108-D
- 17. *Perez J.K.*, *Northrop T.G.* Stationary waves produced by the Earth's bow shock // J. Geophys. Res. 1970. V. 75. Iss. 31. P. 6011–6023. https://doi.org/10.1029/JA075i031p06011
- 18. Wang Y., Zhong J., Slavin J. et al. MESSENGER observations of standing whistler waves upstream of Mercury's bow shock // Geophys. Res. Lett. 2023. V. 50. Art.ID. e2022GL102574. https://doi.org/10.1029/2022GL102574
- 19. Hoppe M.M., Russell C.T. Plasma rest frame frequencies and polarizations of the low-frequency upstream waves: ISEE 1 and 2 observations // J. Geophys. Res. 1983. V. 88. Iss. A3. P. 2021–2027. https://doi.org/10.1029/JA088iA03p02021
- Dimmock A.P., Balikhin M.A., Walker S.N. et al. Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock // Ann. Geophys. 2013. V. 31. P 387–1395. DOI: 10.5194/ angeo-31-1387-2013
- 21. Hellinger P., Mangeney A., Matthews A.P. Whistler waves in 3D hybrid simulations of quasiperpendicular shocks // Geophys. Res. Lett. 1996. V. 23. P. 621–624. DOI: 10.1029/96GL00453
- 22. *Matsukiyo S., Scholer M.* On microinstabilities in the foot of high Mach number perpendicular shocks // J. Geophys. Res. 2006. V. 111. Art.ID. A06104. DOI: 10.1029/2005JA011409.
- 23. *Muschietti L., Lembège B.* Two-stream instabilities from the lower-hybrid frequency to the electron cyclotron frequency: application to the front of quasi-perpendicular shocks // Ann. Geophys. 2017. V. 35. P. 1093–1112. https://doi.org/10.5194/angeo-35-1093-2017
- 24. Burgess D., Scholer M. Collisionless Shocks in Space Plasmas: Structure and Accelerated Particles. Cambridge University Press, 2015. https://doi.org/10.1017/CBO9781139044097
- Nemecek Z., Safrankova J., Goncharov O. et al. Ion scales of quasi-perpendicular low-Mach-number interplanetary shocks // Geophys. Res. Lett. 2013. V. 40. Art.ID. 4133. https://doi.org/10.1002/grl.5081
- 26. Goncharov O., Šafrankova J., Němeček Z. et al. Upstream and downstream wave packets associated with low-Mach number interplanetary shocks // Geophys. Res. Lett. 2014. V. 41. P. 8100–8106. https://doi.org/10.1002/2014GL062149

- 27. Borodkova N.L., Eselevich V.G., Zastenker G.N. et al. Fine structure of interplanetary shock front results from BMSW experiment with high time resolution // J. Geophys. Res. 2019. V. 124. DOI: 10.1029/2018JA026255
- 28. Eselevich V.G., Borodkova N.L. Eselevich M.V. et al. Fine Structure of the Interplanetary Shock Wave Front According to Measurements of the Ion Flux of the Solar Wind with High Time Resolution // Cosmic Res. 2017. V. 55. Iss. 1. P. 30–45. https://doi.org/10.1134/S0010952517010038
- Aguilar-Rodriguez E., Blanco-Cano X., Russell C.T. et al. Dual observations of interplanetary shocks associated with stream interaction regions // J. Plasma Phys. 2011. V. 116. Art.ID. A12109. doi:10.1029/2011JA016559
- 30. Blanco-Cano X., Kajdič P., Aguilar-Rodrguez E. et al. Interplanetary shocks and foreshocks observed by STEREO during 2007–2010 // J. Geophys. Res. 2016. V. 121. P. 992–1008. DOI: 10.1002/2015JA021645
- 31. Wilson L.B. III, Cattell C.A., Kellogg P.J. et al. Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks // J. Geophys. Res. 2009. V. 114. Art.ID. A10106. DOI: 10.1029/2009JA014376
- 32. *Šafrankova J., Němeček Z., Přech L. et al.* Fast Solar Wind Monitor (BMSW): Description and first results //

- Space Sci. Rev. 2013. V. 175. P. 165–182. https://doi.org/10.1007/s11214-013-9979-4
- 33. Zastenker G.N., Šafrankova J., Němeček Z. et al. Fast measurements of parameters of the solar wind using the BMSW instrument // Cosmic Res. 2013. V. 51. Iss. 2. P. 78–89. https://doi.org/10.1134/S0010952513020081
- 34. Lepping R.P., Acuna M.H., Burlaga L.F. et al. The WIND magnetic field investigation // Space Sci. Rev. 1995. V. 71. P. 207–229. https://doi.org/10.1007/BF00751330
- 35. *Biskamp D*. Collisionless shock waves in plasmas // Nucl. Fusion. 1973. V. 13. Art.ID. 719. DOI: 10.1088/0029-5515/13/5/010
- 36. *Decker G., Robson A.E.* Instability of the Whistler Structure of Oblique Hydromagnetic Shocks // Phys. Rev. Lett. 1972. V. 29. Art.ID. 1071. https://doi.org/10.1103/PhysRevLett.29.1071
- 37. *Сапунова О.В., Бородкова Н.Л., Еселевич В.Г. и др.* Тонкая структура фронтов межпланетных ударных волн по данным прибора БМСВ эксперимента ПЛАЗМА-Ф // Косм. исслед. 2017. Т. 55. № 6. С. 407—413. DOI: 10.7868/S0023420617060036
- 38. Lalti A., Khotyaintsev Y.V., Graham D.B. et al. Whistler waves in the foot of quasi-perpendicular supercritical shocks // J. Geophys. Res. 2022. V. 127. Art.ID. e2021JA029969. https://doi.org/10.1029/2021JA02996