A study of electroconvection during uniform electrolyte solution flow through an ion-selective area

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a theoretical investigation of electroconvection emergence and development near an ion-selective area under a uniform electrolyte solution flow through this area are presented in the paper. The linear stability analysis of a stationary solution has allowed obtaining the dependence of the critical electric potential difference (that triggers electrokinetic instability) on the external flow rate. Two-dimensional numerical simulation has revealed the peculiarities of nonlinear electroconvection regimes. The research has proven the stabilizing effect of the external flow: electroconvection occurs at larger potential differences, whereas its regimes change each other faster with increasing the potential difference. Understanding these effects is useful in applications like the development of analyte preconcentration systems in microlaboratories for chemical analysis of biological liquids.

About the authors

G. S. Ganchenko

Laboratory of electro- and hydrodynamics at micro- and nanoscale, Financial University under the Government of the Russian Federation

Leningradsky Prospekt, 49/2, Moscow, 125167 Russia

V. S. Shelistov

Laboratory of electro- and hydrodynamics at micro- and nanoscale, Financial University under the Government of the Russian Federation

Email: shelistov_v@mail.ru
Leningradsky Prospekt, 49/2, Moscow, 125167 Russia

I. I. Olberg

Institute of Mathematics, Mechanics and Computer Sciences named after I.I. Vorovich, Southern Federal University

Milchakova St., 8A, Rostov-on-Don, 344090 Russia

I. V. Morshneva

Institute of Mathematics, Mechanics and Computer Sciences named after I.I. Vorovich, Southern Federal University

Milchakova St., 8A, Rostov-on-Don, 344090 Russia

E. A. Demekhin

Laboratory of electro- and hydrodynamics at micro- and nanoscale, Financial University under the Government of the Russian Federation; Laboratory of general aerodynamics, Institute of Mechanics of Lomonosov Moscow State University

Leningradsky Prospekt, 49/2, Moscow, 125167 Russia; Michurinsky Ave., 1, Moscow, 119192 Russia

References

  1. Wang Y.-C., Stevens A.L., Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter // Anal. Chem. 2005. V. 77. № 14. P. 4293–4299.
  2. Wang S.-C., Wei H.-H., Chen H.-P., Tsai M.-H., Yu C.-C., Chang H.-C. Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes // Biomicrofluidics. 2008. V. 2. № 1. P. 014102. https://doi.org/10.1063/1.2904640
  3. Ouyang W., Ye X., Li Z., Han J. Deciphering ion concentration polarization-based electrokinetic molecular concentration at the micro-nanofluidic interface: theoretical limits and scaling laws // Nanoscale. 2018. V. 10. № 32. P. 15187–15194.
  4. Ouyang W., Han J. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration // Proc. Natl. Acad. Sci. 2019. V. 116. № 33. P. 16240–16249.
  5. Rubinstein I., Shtilman L. Voltage against current curves of cation-exchange membranes // J. Chem. Soc., Faraday Trans. 2. 1979. V. 75. P. 231–246.
  6. Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane // Phys. Rev. E. 2000. V. 62. № 2. P. 2238–2251.
  7. Nikonenko V.V., Pismenskaya N.D., Belova E.I., Sistat P., Huguet P., Pourcelly G., Larchet C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis // Adv. Colloid Interface Sci. 2010. V. 160. № 1–2. P. 101–123. https://doi.org/10.1016/j.cis.2010.08.001
  8. Шелистов В.С., Никитин Н.В., Ганченко Г.С., Демехин Е.А. Численное моделирование электрокинетической неустойчивости в полупроницаемых мембранах // Доклады Российской академии наук. 2011. Т. 440. № 5. С. 625–630.
  9. Левич В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1959.
  10. Chen Q., Liu X., Lei Y., Zhu H. An electrokinetic preconcentration trapping pattern in electromembrane microfluidics // Phys. Fluids. 2022. V. 34. № 9. P. 092009. https://doi.org/10.1063/5.0109394
  11. Butylskii D.Yu., Pismenskaya N.D., Apel P.Yu., Sabbatovskiy K.G., Nikonenko V.V. Highly selective separation of singly charged cations by countercurrent electromigration with a track-etched membrane // J. Membr. Sci. 2021. V. 635. P. 119449.
  12. Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux // Annu. Rev. Fluid Mech. 2012. V. 44. № 1. P. 401–426.
  13. Berzina B., Anand R.K. Tutorial review: Enrichment and separation of neutral and charged species by ion concentration polarization focusing // Anal. Chim. Acta. 2020. V. 1128. P. 149–173.
  14. Sarapulova V.V., Pasechnaya E.L., Titorova V.D., Pismenskaya N.D., Apel P.Yu., Nikonenko V.V. Electrochemical properties of ultrafiltration and nanofiltration membranes in solutions of sodium and calcium chloride // Membr. Membr. Technol. 2020. V. 2. № 5. P. 332–350.
  15. Butylskii D., Troitskiy V., Chuprynina D., Dammak L., Larchet C., Nikonenko V. Application of hybrid electrobaromembrane process for selective recovery of lithium from cobalt- and nickel-containing leaching solutions // Membranes. 2023. V. 13. № 5. P. 509.
  16. Rubinstein I., Zaltzman B. Equilibrium electroconvective instability // Phys. Rev. Lett. 2015. V. 114. № 11. P. 114502.
  17. Ганченко Г.С., Калайдин Е.Н., Чакраборти С., Демехин Е.А. Гидродинамическая неустойчивость при омических режимах в несовершенных электрических мембранах // Доклады Академии наук. 2017. Т. 474. № 3. С. 296–300.
  18. Demekhin E.A., Ganchenko G.S., Kalaydin E.N. Transition to electrokinetic instability near imperfect charge-selective membranes // Phys. Fluids. 2018. V. 30. № 8. P. 082006. https://doi.org/10.1063/1.5038960
  19. Schiffbauer J., Demekhin E., Ganchenko G. Transitions and instabilities in imperfect ion-selective membranes // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6526.
  20. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Гидродинамическая проницаемость // Коллоидный журнал. 2018. Т. 80. № 6. С. 745–757.
  21. Филиппов А.Н., Шкирская С.А. Верификация ячеечной (гетерогенной) модели ионообменной мембраны и ее сравнение с гомогенной моделью // Коллоидный журнал. 2019. Т. 81. № 5. С. 650–659.
  22. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Электродиффузионный коэффициент и диффузионная проницаемость // Коллоидный журнал. 2021. Т. 83. № 3. С. 360–372.
  23. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Капиллярно-осмотический и обратноосмотический коэффициенты // Коллоидный журнал. 2022. Т. 84. № 3. С. 350–362.
  24. Ганченко Г.С., Шелистов В.С., Ольберг И.И., Моршнева И.В., Демехин Е.А. Моделирование влияния конвективных течений через ионоселективную область на токовые режимы в бинарных растворах электролитов // Коллоидный журнал. 2025. № 4. С. 282–289.
  25. Филиппов А.Н. Числа переноса противоионов в ячеечной модели заряженной мембраны // Мембраны и мембранные технологии. 2023. Т. 13. № 5. С. 393–401.
  26. Shelistov V.S., Demekhin E.A., Ganchenko G.S. Electrokinetic instability near charge-selective hydrophobic surfaces // Phys. Rev. E. 2014. V. 90. № 1. P. 013001.
  27. Demekhin E.A., Shelistov V.S., Polyanskikh S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability // Phys. Rev. E. 2011. V. 84. № 3. P. 036318.
  28. Demekhin E.A., Nikitin N.V., Shelistov V.S. Direct numerical simulation of electrokinetic instability and transition to chaotic motion // Phys. Fluids. 2013. V. 25. № 12. P. 122001. https://doi.org/10.1063/1.4843095
  29. Druzgalski C.L., Andersen M.B., Mani, A. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface // Physics of Fluids. 2013. V. 25. № 11. P. 110804. https://doi.org/10.1063/1.4818995
  30. Demekhin E.A., Nikitin N.V., Shelistov V.S. Three-dimensional coherent structures of electrokinetic instability // Phys. Rev. E. 2014. V. 90. № 1. P. 013031.
  31. Шелистов В.С., Демехин Е.А., Ганченко Г.С. Автомодельное решение задачи об электрокинетической неустойчивости в полупроницаемых мембранах // Вестник Московского университета. Серия 1: Математика. Механика. 2014. № 5. С. 62–65.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».