METAL-BASED INKS FOR PRINTED ELECTRONIC COMPARISON OF THE MAIN APPROACHES TO OBTAIN
- 作者: Popovetskiy P.S.1
-
隶属关系:
- Nikolaev Institute of Inorganic Chemistry, Siberian branch, Russian Academy of Sciences
- 期: 卷 87, 编号 5 (2025)
- 页面: 537–562
- 栏目: Articles
- ##submission.dateSubmitted##: 02.12.2025
- ##submission.datePublished##: 15.09.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/355495
- DOI: https://doi.org/10.7868/S3034543X25050057
- ID: 355495
如何引用文章
详细
作者简介
P. Popovetskiy
Nikolaev Institute of Inorganic Chemistry, Siberian branch, Russian Academy of Sciences
Email: popovetskiy@niic.nsc.ru
Novosibirsk, Russia
参考
- Calvert P. Inkjet printing for materials and devices // Chemistry of Materials. 2001. V. 13. № 10. P. 3299–3305. https://doi.org/10.1021/cm0101632
- Perelaer J., Smith P.J., Mager D., et al. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials // Journal of Materials Chemistry. 2010. V. 20. № 39. P. 8446–8453. https://doi.org/10.1039/c0jm00264j
- Kamyshny A., Magdassi S. Conductive nanomaterials for printed electronics // Small. 2014. V. 10. № 17. P. 3515–3535. https://doi.org/10.1002/smll.201303000
- Kamyshny A., Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics // Chemical Society Reviews. V. 48. № 6. P. 1712–1740. https://doi.org/10.1039/C8CS00738A
- Kamyshny A., Steinke J., Magdassi S. Metal-based inkjet inks for printed electronics // The Open Applied Physics Journal. 2011. V. 4. № 1. P. 19–36. https://doi.org/10.2174/1874183501104010019
- Htwe Y.Z.N., Mariatti M., Khan J. Review on solventand surfactant-assisted water-based conductive inks for printed flexible electronics applications // Journal of Materials Science: Materials in Electronics. 2024. V. 35. № 18. P. 1191. https://doi.org/10.1007/s10854-024-12927-4
- Singh M., Haverinen H.M., Dhagat P., et al. Inkjet printing – process and its applications // Advanced Materials. 2010. V. 22. № 6. P. 673–685. https://doi.org/10.1002/adma.200901141
- Wu W. Inorganic nanomaterials for printed electronics: a review // Nanoscale. 2017. V. 9. № 22. P. 7342–7372. https://doi.org/10.1039/c7nr01604b
- Lemarchand J., Bridonneau N., Battaglini N., et al. Challenges, prospects, and emerging applications of inkjet‐printed electronics: a chemist’s point of view // Angewandte Chemie International Edition. 2022. V. 61. № 20. P. e202200166. https://doi.org/10.1002/anie.202200166
- Huang Q., Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications // Advanced Materials Technologies. 2019. V. 4. № 5. P. 1–41. https://doi.org/10.1002/admt.201800546
- Aleeva Y., Pignataro B. Recent advances in upscalable wet methods and ink formulations for printed electronics // J. Mater. Chem. C. 2014. V. 2. № 32. P. 6436–6453. https://doi.org/10.1039/C4TC00618F
- Nayak L., Mohanty S., Nayak S.K., et al. A review on inkjet printing of nanoparticle inks for flexible electronics // Journal of Materials Chemistry C. 2019. V. 7. № 29. P. 8771–8795. https://doi.org/10.1039/C9TC01630A
- Khan Y., Thielens A., Muin S., et al. A new frontier of printed electronics: flexible hybrid electronics // Advanced Materials. 2020. V. 32. № 15. P. 1–29. https://doi.org/10.1002/adma.201905279
- Khan S., Lorenzelli L. Recent advances of conductive nanocomposites in printed and flexible electronics // Smart Materials and Structures. 2017. V. 26. № 8. P. 083001. https://doi.org/10.1088/1361-665X/aa7373
- Bi S., Gao B., Han X., et al. Recent progress in printing flexible electronics: a review // Science China Technological Sciences. 2024. V. 67. № 8. P. 2363–2386. https://doi.org/10.1007/s11431-021-2093-4
- Zavanelli N., Yeo W.-H. Advances in screen printing of conductive nanomaterials for stretchable electronics // ACS Omega. 2021. V. 6. № 14. P. 9344–9351. https://doi.org/10.1021/acsomega.1c00638
- Naghdi S., Rhee K.Y., Hui D., et al. A Review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications // Coatings. 2018. V. 8. № 8. P. 278. https://doi.org/10.3390/coatings8080278
- Li D., Lai W., Zhang Y., et al. Printable transparent conductive films for flexible electronics // Advanced Materials. 2018. V. 30. № 10. P. 1–24. https://doi.org/10.1002/adma.201704738
- Li W., Akhter Z., Vaseem M., et al. Optically transparent and flexible radio frequency electronics through printing technologies // Advanced Materials Technologies. 2022. V. 7. № 6. P. 1–18. https://doi.org/10.1002/admt.202101277
- Yan K., Li J., Pan L., et al. Inkjet printing for flexible and wearable electronics // APL Materials. 2020. V. 8. № 12. P. 120705. https://doi.org/10.1063/5.0031669
- Won D., Bang J., Choi S.H., et al. Transparent electronics for wearable electronics application // Chemical Reviews. 2023. V. 123. № 16. P. 9982–10078. https://doi.org/10.1021/acs.chemrev.3c00139
- Słoma M. 3D printed electronics with nanomaterials // Nanoscale. 2023. V. 15. № 12. P. 5623–5648. https://doi.org/10.1039/D2NR06771D
- Nabi S., Isaev A., Chiolerio A. Inkjet printing of functional materials for low-temperature electronics: a review of materials and strategies // ACS Applied Electronic Materials. 2024. V. 6. № 11. P. 7679–7719. https://doi.org/10.1021/acsaelm.4c01257
- Choi Y., Seong K., Piao Y. Metal−organic decomposition ink for printed electronics // Advanced Materials Interfaces. 2019. V. 6. № 20. P. 1–14. https://doi.org/10.1002/admi.201901002
- Kell A.J., Wagner K., Liu X., et al. Advanced applications of metal-organic decomposition inks in printed electronics // ACS Applied Electronic Materials. 2024. V. 6. № 1. P. 1–23. https://doi.org/10.1021/acsaelm.3c00910
- Junfeng Mei, Lovell M.R., Mickle M.H. Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits // IEEE Transactions on Electronics Packaging Manufacturing. 2005. V. 28. № 3. P. 265–273. https://doi.org/10.1109/TEPM.2005.852542
- He J., Kunitake T. Formation of silver nanoparticles and nanocraters on silicon wafers // Langmuir. 2006. V. 22. № 18. P. 7881–7884. https://doi.org/10.1021/la0610349
- Wu J.-T., Hsu S.L.-C., Tsai M.-H., et al. Conductive silver patterns via ethylene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate // Thin Solid Films. 2009. V. 517. № 20. P. 5913–5917. https://doi.org/10.1016/j.tsf.2009.04.049
- Liu Z., Su Y., Varahramyan K. Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers // Thin Solid Films. 2005. V. 478. № 1–2. P. 275–279. https://doi.org/10.1016/j.tsf.2004.11.077
- Xue F., Liu Z., Su Y., et al. Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors // Microelectronic Engineering. 2006. V. 83. № 2. P. 298–302. https://doi.org/10.1016/j.mee.2005.09.002
- Yin Y., Li Z.-Y., Zhong Z., et al. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process // Journal of Materials Chemistry. 2002. V. 12. № 3. P. 522–527. https://doi.org/10.1039/b107469e
- Vaseem M., McKerricher G., Shamim A. Robust design of a particle-free silver-organo-complex ink with high conductivity and inkjet stability for flexible electronics // ACS Applied Materials and Interfaces. 2016. V. 8. № 1. P. 177–186. https://doi.org/10.1021/acsami.5b08125
- Walker S.B., Lewis J.A. Reactive silver inks for patterning high-conductivity features at mild temperatures // Journal of the American Chemical Society. 2012. V. 134. № 3. P. 1419–1421. https://doi.org/10.1021/ja209267c
- Kholuiskaya S.N., Siracusa V., Mukhametova G.M., et al. An approach to a silver conductive ink for inkjet printer technology // Polymers. 2024. V. 16. № 12. P. 1731. https://doi.org/10.3390/polym16121731
- Kastner J., Faury T., Außerhuber H.M., et al. Silver-based reactive ink for inkjet-printing of conductive lines on textiles // Microelectronic Engineering. 2017. V. 176. P. 84–88. https://doi.org/10.1016/j.mee.2017.02.004
- Shahariar H., Kim I., Soewardiman H., et al. Inkjet printing of reactive silver ink on textiles // ACS Applied Materials & Interfaces. 2019. V. 11. № 6. P. 6208–6216. https://doi.org/10.1021/acsami.8b18231
- Yang W., Liu C., Zhang Z., et al. One step synthesis of uniform organic silver ink drawing directly on paper substrates // Journal of Materials Chemistry. 2012. V. 22. № 43. P. 23012–23016. https://doi.org/10.1039/c2jm34264b
- Liu G., Yang W., Wang C., et al. A rapid fabrication approach for the capacitive accelerometer based on 3D printing and a silver particle-free ink // Journal of Materials Science: Materials in Electronics. 2021. V. 32. № 13. P. 17901–17910. https://doi.org/10.1007/s10854-021-06326-2
- Yang W., Wang C., Arrighi V., et al. One step synthesis of a hybrid Ag/RGO conductive ink using a complexation–covalent bonding based approach // Journal of Materials Science: Materials in Electronics. 2017. V. 28. № 11. P. 8218–8230. https://doi.org/10.1007/s10854-017-6533-2
- Jahn S.F., Blaudeck T., Baumann R.R., et al. Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands // Chemistry of Materials. 2010. V. 22. № 10. P. 3067–3071. https://doi.org/10.1021/cm9036428
- Zhang L., Gan G., Fan P., et al. Facile preparation of particle-free hybrid amine silver ink with synergistic effect for low-resistivity flexible films // Journal of Coatings Technology and Research. 2023. V. 20. № 6. P. 1845–1856. https://doi.org/10.1007/s11998-023-00781-8
- Zope K.R., Cormier D., Williams S.A. Reactive silver oxalate ink composition with enhanced curing conditions for flexible substrates // ACS Applied Materials & Interfaces. 2018. V. 10. № 4. P. 3830–3837. https://doi.org/10.1021/acsami.7b19161
- Yang W., Mathies F., Unger E.L., et al. One-pot synthesis of a stable and cost-effective silver particle-free ink for inkjet-printed flexible electronics // Journal of Materials Chemistry C. 2020. V. 8. № 46. P. 16443–16451. https://doi.org/10.1039/D0TC03864D
- Hu M., Cai X., Guo Q., et al. Direct pen writing of adhesive particle-free ultrahigh silver salt-loaded composite ink for stretchable circuits // ACS Nano. 2016. V. 10. № 1. P. 396–404. https://doi.org/10.1021/acsnano.5b05082
- Manjunath G., Pujar P., Gupta B., et al. Low-temperature reducible particle-free screen-printable silver ink for the fabrication of high conductive electrodes // Journal of Materials Science: Materials in Electronics. 2019. V. 30. № 20. P. 18647–18658. https://doi.org/10.1007/s10854-019-02217-9
- Adner D., Korb M., Schulze S., et al. A straightforward approach to oxide-free copper nanoparticles by thermal decomposition of a copper(I) precursor // Chemical Communications. 2013. V. 49. № 61. P. 6855–6857. https://doi.org/10.1039/c3cc42914h
- Lee Y.-I., Lee K.-J., Goo Y.-S., et al. Effect of complex agent on characteristics of copper conductive pattern formed by ink-jet printing // Japanese Journal of Applied Physics. 2010. V. 49. № 8R. P. 086501. https://doi.org/10.1143/JJAP.49.086501
- Lee Y.-I., Choa Y.-H. Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate // Journal of Materials Chemistry. 2012. V. 22. № 25. P. 12517– 12522. https://doi.org/10.1039/c2jm31381b
- Kim S.J., Lee J., Choi Y.-H., et al. Effect of copper concentration in printable copper inks on film fabrication // Thin Solid Films. 2012. V. 520. № 7. P. 2731–2734. https://doi.org/10.1016/j.tsf.2011.11.056
- Choi Y.-H., Lee J., Kim S.J., et al. Highly conductive polymer-decorated Cu electrode films printed on glass substrates with novel precursor-based inks and pastes // Journal of Materials Chemistry. 2012. V. 22. № 8. P. 3624– 3631. https://doi.org/10.1039/c2jm15124c
- Xu W., Wang T. Synergetic effect of blended alkylamines for copper complex ink to form conductive copper films // Langmuir. 2017. V. 33. № 1. P. 82–90. https://doi.org/10.1021/acs.langmuir.6b03668
- Paquet C., Lacelle T., Liu X., et al. The role of amine ligands in governing film morphology and electrical properties of copper films derived from copper formate-based molecular inks // Nanoscale. 2018. V. 10. № 15. P. 6911–6921. https://doi.org/10.1039/C7NR08891D
- Shin D.-H., Woo S., Yem H., et al. A self-reducible and alcohol-soluble copper-based metal–organic decomposition ink for printed electronics // ACS Applied Materials & Interfaces. 2014. V. 6. № 5. P. 3312–3319. https://doi.org/10.1021/am4036306
- Farraj Y., Grouchko M., Magdassi S. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics // Chemical Communications. Royal Society of Chemistry, 2015. V. 51. № 9. P. 1587–1590. https://doi.org/10.1039/C4CC08749F
- Li D., Sutton D., Burgess A., et al. Conductive copper and nickel lines via reactive inkjet printing // Journal of Materials Chemistry. 2009. V. 19. № 22. P. 3719–3724. https://doi.org/10.1039/b820459d
- Abulikemu M., Da’as E.H., Haverinen H., et al. In situ synthesis of self‐assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing // Angewandte Chemie International Edition. 2014. V. 53. № 2. P. 420–423. https://doi.org/10.1002/anie.201308429
- Hong J., Yick S., Chow E., et al. Direct plasma printing of nano-gold from an inorganic precursor // Journal of Materials Chemistry C. 2019. V. 7. № 21. P. 6369–6374. https://doi.org/10.1039/C9TC01808E
- Nur H.M., Song J.H., Evans J.R.G., et al. Ink-jet printing of gold conductive tracks // Journal of Materials Science: Materials in Electronics. 2002. V. 13. № 4. P. 213–219. https://doi.org/10.1023/a:1014827900606
- Yamauchi T., Tsukahara Y., Sakamoto T., et al. Microwave-Assisted synthesis of monodisperse nickel nanoparticles using a complex of nickel formate with long-chain amine ligands // Bulletin of the Chemical Society of Japan. 2009. V. 82. № 8. P. 1044–1051. https://doi.org/10.1246/bcsj.82.1044
- Mahajan C.G., Alfadhel A., Irving M., et al. Magnetic field patterning of nickel nanowire film realized by printed precursor inks // Materials. 2019. V. 12. № 6. P. 928. https://doi.org/10.3390/ma12060928
- Yabuki A., Ichida Y., Kang S., et al. Nickel film synthesized by the thermal decomposition of nickel-amine complexes // Thin Solid Films. 2017. V. 642. P. 169–173. https://doi.org/10.1016/j.tsf.2017.09.040
- Xie W., Li X., Zhang M., et al. Formulating nickel metal organic decomposition ink with low sintering temperature and high conductivity for ink jet printing applications // Journal of Materials Science: Materials in Electronics. 2023. V. 34. № 27. P. 1872. https://doi.org/10.1007/s10854-023-11284-y
- Xie W., Li X., Zhang M., et al. A Nickel metal-organic-decomposition ink of nickel-ethanolamine complex leading to highly conductive nickel patterns for printed electronic applications // Thin Solid Films. 2022. V. 744. P. 139081. https://doi.org/10.1016/j.tsf.2022.139081
- Layani M., Gruchko M., Milo O., et al. Transparent conductive coatings by printing coffee ring arrays obtained at room temperature // ACS Nano. 2009. V. 3. № 11. P. 3537–3542. https://doi.org/10.1021/nn901239z
- Magdassi S., Grouchko M., Kamyshny A. Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability // Materials. 2010. V. 3. № 9. P. 4626–4638. https://doi.org/10.3390/ma3094626
- Lee J.J., Park J.C., Kim M.H., et al. Silver complex inks for ink-jet printing: The synthesis and conversion to a metallic particulate ink // Journal of Ceramic Processing Research. 2007. V. 8. № 3. P. 219–223.
- Ryu B.H., Choi Y., Park H.S., et al. Synthesis of highly concentrated silver nanosol and its application to inkjet printing // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005. V. 270–271. P. 345–351. https://doi.org/10.1016/j.colsurfa.2005.09.005
- Vaseem M., Lee K.M., Hong A.R., et al. Inkjet Printed fractal-connected electrodes with silver nanoparticle ink // ACS Applied Materials and Interfaces. 2012. V. 4. № 6. P. 3300–3307. https://doi.org/10.1021/am300689d
- Yung K.C., Gu X., Lee C.P., et al. Ink-jet printing and camera flash sintering of silver tracks on different substrates // Journal of Materials Processing Technology. 2010. V. 210. № 15. P. 2268–2272. https://doi.org/10.1016/j.jmatprotec.2010.08.014
- Milardović S., Ivaniševic I., Rogina A., et al. Synthesis and electrochemical characterization of AgNP ink suitable for inkjet printing // International Journal of Electrochemical Science. 2018. V. 13. № 11. P. 11136–11149. https://doi.org/10.20964/2018.11.87
- Jeong S., Song H.C., Lee W.W., et al. Preparation of aqueous ag ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film // Journal of Applied Physics. 2010. V. 108. № 10. P. 102805. https://doi.org/10.1063/1.3511686
- Ahn B.Y., Lewis J.A. Amphiphilic Silver particles for conductive inks with controlled wetting behavior // Materials Chemistry and Physics. 2014. V. 148. № 3. P. 686–691. https://doi.org/10.1016/j.matchemphys.2014.08.035
- Magdassi S., Grouchko M., Berezin O., et al. Triggering the sintering of silver nanoparticles at room temperature // ACS Nano. 2010. V. 4. № 4. P. 1943–1948. https://doi.org/10.1021/nn901868t
- Grouchko M., Kamyshny A., Mihailescu C.F., et al. Conductive inks with a “built-in” mechanism that enables sintering at room temperature // ACS Nano. 2011. V. 5. № 4. P. 3354–3359. https://doi.org/10.1021/nn2005848
- Kim J.H., Lee S., Wajahat M., et al. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures // Nanoscale. 2019. V. 11. № 38. P. 17682–17688. https://doi.org/10.1039/c9nr05894j
- Jo Y., Oh S.-J., Lee S.S., et al. Extremely flexible, printable Ag conductive features on PET and paper substrates via continuous millisecond photonic sintering in a large area // J. Mater. Chem. 2014. V. 2. № 45. P. 9746–9753. https://doi.org/10.1039/C4TC01422G
- Bulavchenko A.I., Arymbaeva A.T., Demidova M.G., et al. Synthesis and concentration of organosols of silver nanoparticles stabilized by AOT: Emulsion versus microemulsion // Langmuir. 2018. V. 34. № 8. P. 2815–2822. https://doi.org/10.1021/acs.langmuir.7b04071
- Bulavchenko A.I., Pletnev D.N. Electrophoretic concentration of nanoparticles of gold in reversed micellar solutions of AOT // Journal of Physical Chemistry C. 2008. V. 112. № 42. P. 16365–16369. https://doi.org/10.1021/jp805268w
- Поповецкий П.С., Арымбаева А.Т., Бордзиловский Д.С., Майоров А.П., Максимовский Е.А., Булавченко А.И. Синтез и электрофоретическое концентрирование наночастиц серебра в обратных эмульсиях бис(2-этилгексил)сульфосукцината натрия и получение на их основе проводящих покрытий методом селективного лазерного спекания // Коллоидный ЖУрнал. 2019.Т 81. № 4. С. 501–507. https://doi.org/10.1134/S0023291219040116
- Воробьев С.А., Флерко М.Ю., Новикова С.А., et al. Синтез И Исследование Сверхконцентрированных Органозолей Наночастиц Серебра // Коллоидный Журнал. 2024. V. 86. № 2. P. 193–203. https://doi.org/10.31857/s0023291224020047
- Carey Lea M. Allotropic forms of silver // American Journal of Science. 1889. V. s3–38. № 223. P. 476–491. https://doi.org/10.2475/ajs.s3-38.223.47
- Vorobyev S.A., Likhatski M.N., Romanchenko A.S., et al. The influence of the reaction conditions on the size of silver nanoparticles in Carey Lea’s concentrated sols // Journal of Siberian Federal University. Chemistry. 2020. V. 13. № 3. P. 372–384. https://doi.org/10.17516/1998-2836-0190
- Vorobyev S.A., Likhatski M.N., Romanchenko A.S., et al. Fabrication of extremely concentrated silver hydrosols without additional stabilizers // ACS Sustainable Chemistry & Engineering. 2020. V. 8. № 46. P. 17225–17233. https://doi.org/10.1021/acssuschemeng.0c06006
- Kang J.S., Ryu J., Kim H.S., et al. Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light // Journal of Electronic Materials. 2011. V. 40. № 11. P. 2268–2277. https://doi.org/10.1007/s11664-011-1711-0
- Perelaer J., De Laat A.W.M., Hendriks C.E., et al. Inkjet-printed silver tracks: low temperature curing and thermal stability investigation // Journal of Materials Chemistry. 2008. V. 18. № 27. P. 3209–3215. https://doi.org/10.1039/b720032c
- Titkov A.I., Bukhanets O.G., Gadirov R.M., et al. Conductive inks for inkjet printing based on composition of nanoparticles and organic silver salt // Inorganic Materials: Applied Research. 2015. V. 6. № 4. P. 375–381. https://doi.org/10.1134/S2075113315040243
- Yukhin Y.M., Titkov A.I., Kulmukhamedov G.K., et al. Synthesis of silver nanoparticles via reduction of silver carboxylates by ethylene glycol // Theoretical Foundations of Chemical Engineering. 2015. V. 49. № 4. P. 490–496. https://doi.org/10.1134/S004057951504020X
- Титков А.И., Гадиров Р.М., Никонов С.Ю., et al. Селективное лазерное спекание токопроводящих чернил для струйной печати на основе композиции наночастиц и органической соли серебра // Известия Высших учебных заведений. Физика. 2017. V. 60. № 10. P. 24–29.
- Titkov A.I., Shundrina I.K., Gadirov R.M., et al. Thermal and laser sintering of a highly stable inkjet ink consisting of silver nanoparticles stabilized by a combination of a short chain carboxylic acid and a polymeric dispersant // Materials Today: Proceedings. 2018. V. 5. № 8. P. 16042–16050. https://doi.org/10.1016/j.matpr.2018.05.049
- Park B.K., Kim D., Jeong S., et al. Direct writing of copper conductive patterns by ink-jet printing // Thin Solid Films. 2007. V. 515. № 19. P. 7706–7711. https://doi.org/10.1016/j.tsf.2006.11.142
- Jason N.N., Shen W., Cheng W. Copper nanowires as conductive ink for low-cost draw-on electronics // ACS Applied Materials and Interfaces. 2015. V. 7. № 30. P. 16760–16766. https://doi.org/10.1021/acsami.5b04522
- Dharmadasa R., Jha M., Amos D.A., et al. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films // ACS Applied Materials and Interfaces. 2013. V. 5. № 24. P. 13227–13234.https://doi.org/10.1021/am404226e
- Hokita Y., Kanzaki M., Sugiyama T., et al. High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks // ACS Applied Materials & Interfaces. 2015. V. 7. № 34. P. 19382–19389. https://doi.org/10.1021/acsami.5b05542
- Yuki Kawaguchi Y.K., Ryuichi R., Kawasaki H. Formate-free metal-organic decomposition inks of copper particles and self-reductive copper complex for the fabrication of conductive copper films // Journal of Coating Science and Technology. 2016. V. 3. № 2. P. 56–61. https://doi.org/10.6000/2369-3355.2016.03.02.2
- Yonezawa T., Tsukamoto H., Yong Y., et al. Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu2+ -alkanolamine metallacycle compounds for electrically conductive layer formation // RSC Advances. Royal Society of Chemistry, 2016. V. 6. № 15. P. 12048–12052. https://doi.org/10.1039/C5RA25058G
- Lee B., Kim Y., Yang S., et al. A low-cure-temperature copper nano ink for highly conductive printed electrodes // Current Applied Physics. 2009. V. 9. № 2. P. e157–e160. https://doi.org/10.1016/j.cap.2009.03.008
- Kang J.S., Kim H.S., Ryu J., et al. Inkjet printed electronics using copper nanoparticle ink // Journal of Materials Science: Materials in Electronics. 2010. V. 21. № 11. P. 1213–1220. https://doi.org/10.1007/s10854-009-0049-3
- Kim H.S., Dhage S.R., Shim D.E., et al. Intense pulsed light sintering of copper nanoink for printed electronics // Applied Physics A: Materials Science and Processing. 2009. V. 97. № 4. P. 791–798. https://doi.org/10.1007/s00339-009-5360-6
- Joo S.-J., Hwang H.-J., Kim H.-S. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics // Nanotechnology. 2014. V. 25. № 26. P. 265601. https://doi.org/10.1088/0957-4484/25/26/265601
- Joo S.J., Park S.H., Moon C.J., et al. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique // ACS Applied Materials and Interfaces. 2015. V. 7. № 10. P. 5674–5684. https://doi.org/10.1021/am506765p
- Ryu C.H., Joo S.J., Kim H.S. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping // Applied Surface Science. 2016. V. 384. P. 182–191. https://doi.org/10.1016/j.apsusc.2016.05.025
- Benson J., Fung C.M., Lloyd J.S., et al. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications // Nanoscale Research Letters. 2015. V. 10. P. 127. https://doi.org/10.1186/s11671-015-0835-1
- Pavithra M., Muruganand S., Parthiban C. Development of novel paper based electrochemical immunosensor with self-made gold nanoparticle ink and quinone derivate for highly sensitive carcinoembryonic antigen // Sensors and Actuators B: Chemical. 2018. V. 257. P. 496–503. https://doi.org/10.1016/j.snb.2017.10.177
- Deng M., Zhang X., Zhang Z., et al. A gold nanoparticle ink suitable for the fabrication of electrochemical electrode by inkjet printing // Journal of Nanoscience and Nanotechnology. 2014. V. 14. № 7. P. 5114–5119. https://doi.org/10.1166/jnn.2014.7208
- Cui W., Lu W., Zhang Y., et al. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. V. 358. № 1–3. P. 35–41. https://doi.org/10.1016/j.colsurfa.2010.01.023
- Mekhmouken S., Battaglini N., Mattana G., et al. Gold nanoparticle-based eco-friendly ink for electrode patterning on flexible substrates // Electrochemistry Communications. 2021. V. 123. P. 106918. https://doi.org/10.1016/j.elecom.2021.106918
- Podlipskaya T.Y., Shaparenko N.O., Demidova M.G., et al. The role of reverse micelles and metal-surfactant interactions in the synthesis of gold ink in reverse emulsions stabilized by AOT, tergitol NP-4 and Span 80 // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 649. № April. P. 129452. https://doi.org/10.1016/j.colsurfa.2022.129452
- Bacalzo N.P., Go L.P., Querebillo C.J., et al. Controlled microwave-hydrolyzed starch as a stabilizer for green formulation of aqueous gold nanoparticle ink for flexible printed electronics // ACS Applied Nano Materials. 2018. V. 1. № 3. P. 1247–1256. https://doi.org/10.1021/acsanm.7b00379
- Reiser B., González-García L., Kanelidis I., et al. Gold nanorods with conjugated polymer ligands: Sintering-free conductive inks for printed electronics // Chemical Science. 2016. V. 7. № 7. P. 4190–4196. https://doi.org/10.1039/c6sc00142d
- Ye X., Zheng C., Chen J., et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods // Nano Letters. 2013. V. 13. № 2. P. 765–771. https://doi.org/10.1021/nl304478h
补充文件

