METAL-BASED INKS FOR PRINTED ELECTRONIC COMPARISON OF THE MAIN APPROACHES TO OBTAIN

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Printed electronic is an area of modern materials science that is undergoing rapid development. The use of printing equipment has the potential to significantly simplify and reduce the cost of obtaining passive and active electronic components. Dozens of reviews and hundreds of scientific articles are published annually in this field. However, it should be noted that the consumer characteristics of ink formulations for printed electronic are, to a certain extent, compromises. Improving one property usually results in a deterioration of another. For example, increasing the content of the main component usually leads to a decrease in stability. This review paper will compare two main approaches to obtaining metal-based inks, which can be conventionally called “organometallic” and “colloidal,” examine their strengths and weaknesses, and assess the prospects for further development in printed electronic.

作者简介

P. Popovetskiy

Nikolaev Institute of Inorganic Chemistry, Siberian branch, Russian Academy of Sciences

Email: popovetskiy@niic.nsc.ru
Novosibirsk, Russia

参考

  1.  Calvert P. Inkjet printing for materials and devices // Chemistry of Materials. 2001. V. 13. № 10. P. 3299–3305. https://doi.org/10.1021/cm0101632
  2.  Perelaer J., Smith P.J., Mager D., et al. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials // Journal of Materials Chemistry. 2010. V. 20. № 39. P. 8446–8453. https://doi.org/10.1039/c0jm00264j
  3.  Kamyshny A., Magdassi S. Conductive nanomaterials for printed electronics // Small. 2014. V. 10. № 17. P. 3515–3535. https://doi.org/10.1002/smll.201303000
  4.  Kamyshny A., Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics // Chemical Society Reviews. V. 48. № 6. P. 1712–1740. https://doi.org/10.1039/C8CS00738A
  5.  Kamyshny A., Steinke J., Magdassi S. Metal-based inkjet inks for printed electronics // The Open Applied Physics Journal. 2011. V. 4. № 1. P. 19–36. https://doi.org/10.2174/1874183501104010019
  6.  Htwe Y.Z.N., Mariatti M., Khan J. Review on solventand surfactant-assisted water-based conductive inks for printed flexible electronics applications // Journal of Materials Science: Materials in Electronics. 2024. V. 35. № 18. P. 1191. https://doi.org/10.1007/s10854-024-12927-4
  7.  Singh M., Haverinen H.M., Dhagat P., et al. Inkjet printing – process and its applications // Advanced Materials. 2010. V. 22. № 6. P. 673–685. https://doi.org/10.1002/adma.200901141
  8.  Wu W. Inorganic nanomaterials for printed electronics: a review // Nanoscale. 2017. V. 9. № 22. P. 7342–7372. https://doi.org/10.1039/c7nr01604b
  9.  Lemarchand J., Bridonneau N., Battaglini N., et al. Challenges, prospects, and emerging applications of inkjet‐printed electronics: a chemist’s point of view // Angewandte Chemie International Edition. 2022. V. 61. № 20. P. e202200166. https://doi.org/10.1002/anie.202200166
  10.  Huang Q., Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications // Advanced Materials Technologies. 2019. V. 4. № 5. P. 1–41. https://doi.org/10.1002/admt.201800546
  11.  Aleeva Y., Pignataro B. Recent advances in upscalable wet methods and ink formulations for printed electronics // J. Mater. Chem. C. 2014. V. 2. № 32. P. 6436–6453. https://doi.org/10.1039/C4TC00618F
  12.  Nayak L., Mohanty S., Nayak S.K., et al. A review on inkjet printing of nanoparticle inks for flexible electronics // Journal of Materials Chemistry C. 2019. V. 7. № 29. P. 8771–8795. https://doi.org/10.1039/C9TC01630A
  13.  Khan Y., Thielens A., Muin S., et al. A new frontier of printed electronics: flexible hybrid electronics // Advanced Materials. 2020. V. 32. № 15. P. 1–29. https://doi.org/10.1002/adma.201905279
  14.  Khan S., Lorenzelli L. Recent advances of conductive nanocomposites in printed and flexible electronics // Smart Materials and Structures. 2017. V. 26. № 8. P. 083001. https://doi.org/10.1088/1361-665X/aa7373
  15.  Bi S., Gao B., Han X., et al. Recent progress in printing flexible electronics: a review // Science China Technological Sciences. 2024. V. 67. № 8. P. 2363–2386. https://doi.org/10.1007/s11431-021-2093-4
  16.  Zavanelli N., Yeo W.-H. Advances in screen printing of conductive nanomaterials for stretchable electronics // ACS Omega. 2021. V. 6. № 14. P. 9344–9351. https://doi.org/10.1021/acsomega.1c00638
  17.  Naghdi S., Rhee K.Y., Hui D., et al. A Review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications // Coatings. 2018. V. 8. № 8. P. 278. https://doi.org/10.3390/coatings8080278
  18.  Li D., Lai W., Zhang Y., et al. Printable transparent conductive films for flexible electronics // Advanced Materials. 2018. V. 30. № 10. P. 1–24. https://doi.org/10.1002/adma.201704738
  19.  Li W., Akhter Z., Vaseem M., et al. Optically transparent and flexible radio frequency electronics through printing technologies // Advanced Materials Technologies. 2022. V. 7. № 6. P. 1–18. https://doi.org/10.1002/admt.202101277
  20.  Yan K., Li J., Pan L., et al. Inkjet printing for flexible and wearable electronics // APL Materials. 2020. V. 8. № 12. P. 120705. https://doi.org/10.1063/5.0031669
  21.  Won D., Bang J., Choi S.H., et al. Transparent electronics for wearable electronics application // Chemical Reviews. 2023. V. 123. № 16. P. 9982–10078. https://doi.org/10.1021/acs.chemrev.3c00139
  22.  Słoma M. 3D printed electronics with nanomaterials // Nanoscale. 2023. V. 15. № 12. P. 5623–5648. https://doi.org/10.1039/D2NR06771D
  23.  Nabi S., Isaev A., Chiolerio A. Inkjet printing of functional materials for low-temperature electronics: a review of materials and strategies // ACS Applied Electronic Materials. 2024. V. 6. № 11. P. 7679–7719. https://doi.org/10.1021/acsaelm.4c01257
  24.  Choi Y., Seong K., Piao Y. Metal−organic decomposition ink for printed electronics // Advanced Materials Interfaces. 2019. V. 6. № 20. P. 1–14. https://doi.org/10.1002/admi.201901002
  25.  Kell A.J., Wagner K., Liu X., et al. Advanced applications of metal-organic decomposition inks in printed electronics // ACS Applied Electronic Materials. 2024. V. 6. № 1. P. 1–23. https://doi.org/10.1021/acsaelm.3c00910
  26.  Junfeng Mei, Lovell M.R., Mickle M.H. Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits // IEEE Transactions on Electronics Packaging Manufacturing. 2005. V. 28. № 3. P. 265–273. https://doi.org/10.1109/TEPM.2005.852542
  27.  He J., Kunitake T. Formation of silver nanoparticles and nanocraters on silicon wafers // Langmuir. 2006. V. 22.  № 18. P. 7881–7884. https://doi.org/10.1021/la0610349
  28.  Wu J.-T., Hsu S.L.-C., Tsai M.-H., et al. Conductive silver patterns via ethylene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate // Thin Solid Films. 2009. V. 517. № 20. P. 5913–5917. https://doi.org/10.1016/j.tsf.2009.04.049
  29.  Liu Z., Su Y., Varahramyan K. Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers // Thin Solid Films. 2005. V. 478. № 1–2. P. 275–279. https://doi.org/10.1016/j.tsf.2004.11.077
  30.  Xue F., Liu Z., Su Y., et al. Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors // Microelectronic Engineering. 2006. V. 83. № 2. P. 298–302. https://doi.org/10.1016/j.mee.2005.09.002
  31.  Yin Y., Li Z.-Y., Zhong Z., et al. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process // Journal of Materials Chemistry. 2002. V. 12. № 3. P. 522–527. https://doi.org/10.1039/b107469e
  32.  Vaseem M., McKerricher G., Shamim A. Robust design of a particle-free silver-organo-complex ink with high conductivity and inkjet stability for flexible electronics // ACS Applied Materials and Interfaces. 2016. V. 8. № 1. P. 177–186. https://doi.org/10.1021/acsami.5b08125
  33.  Walker S.B., Lewis J.A. Reactive silver inks for patterning high-conductivity features at mild temperatures // Journal of the American Chemical Society. 2012. V. 134. № 3. P. 1419–1421. https://doi.org/10.1021/ja209267c
  34.  Kholuiskaya S.N., Siracusa V., Mukhametova G.M., et al. An approach to a silver conductive ink for inkjet printer technology // Polymers. 2024. V. 16. № 12. P. 1731. https://doi.org/10.3390/polym16121731
  35.  Kastner J., Faury T., Außerhuber H.M., et al. Silver-based reactive ink for inkjet-printing of conductive lines on textiles // Microelectronic Engineering. 2017. V. 176. P. 84–88. https://doi.org/10.1016/j.mee.2017.02.004
  36.  Shahariar H., Kim I., Soewardiman H., et al. Inkjet printing of reactive silver ink on textiles // ACS Applied Materials & Interfaces. 2019. V. 11. № 6. P. 6208–6216. https://doi.org/10.1021/acsami.8b18231
  37.  Yang W., Liu C., Zhang Z., et al. One step synthesis of uniform organic silver ink drawing directly on paper substrates // Journal of Materials Chemistry. 2012. V. 22. № 43. P. 23012–23016. https://doi.org/10.1039/c2jm34264b
  38.  Liu G., Yang W., Wang C., et al. A rapid fabrication approach for the capacitive accelerometer based on 3D printing and a silver particle-free ink // Journal of Materials Science: Materials in Electronics. 2021. V. 32. № 13. P. 17901–17910. https://doi.org/10.1007/s10854-021-06326-2
  39.  Yang W., Wang C., Arrighi V., et al. One step synthesis of a hybrid Ag/RGO conductive ink using a complexation–covalent bonding based approach // Journal of Materials Science: Materials in Electronics. 2017. V. 28. № 11. P. 8218–8230. https://doi.org/10.1007/s10854-017-6533-2
  40.  Jahn S.F., Blaudeck T., Baumann R.R., et al. Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands // Chemistry of Materials. 2010. V. 22. № 10. P. 3067–3071. https://doi.org/10.1021/cm9036428
  41.  Zhang L., Gan G., Fan P., et al. Facile preparation of particle-free hybrid amine silver ink with synergistic effect for low-resistivity flexible films // Journal of Coatings Technology and Research. 2023. V. 20. № 6. P. 1845–1856. https://doi.org/10.1007/s11998-023-00781-8
  42.  Zope K.R., Cormier D., Williams S.A. Reactive silver oxalate ink composition with enhanced curing conditions for flexible substrates // ACS Applied Materials & Interfaces. 2018. V. 10. № 4. P. 3830–3837. https://doi.org/10.1021/acsami.7b19161
  43.  Yang W., Mathies F., Unger E.L., et al. One-pot synthesis of a stable and cost-effective silver particle-free ink for inkjet-printed flexible electronics // Journal of Materials Chemistry C. 2020. V. 8. № 46. P. 16443–16451. https://doi.org/10.1039/D0TC03864D
  44.  Hu M., Cai X., Guo Q., et al. Direct pen writing of adhesive particle-free ultrahigh silver salt-loaded composite ink for stretchable circuits // ACS Nano. 2016. V. 10. № 1. P. 396–404. https://doi.org/10.1021/acsnano.5b05082
  45.  Manjunath G., Pujar P., Gupta B., et al. Low-temperature reducible particle-free screen-printable silver ink for the fabrication of high conductive electrodes // Journal of Materials Science: Materials in Electronics. 2019. V. 30. № 20. P. 18647–18658. https://doi.org/10.1007/s10854-019-02217-9
  46.  Adner D., Korb M., Schulze S., et al. A straightforward approach to oxide-free copper nanoparticles by thermal decomposition of a copper(I) precursor // Chemical Communications. 2013. V. 49. № 61. P. 6855–6857. https://doi.org/10.1039/c3cc42914h
  47.  Lee Y.-I., Lee K.-J., Goo Y.-S., et al. Effect of complex agent on characteristics of copper conductive pattern formed by ink-jet printing // Japanese Journal of Applied Physics. 2010. V. 49. № 8R. P. 086501. https://doi.org/10.1143/JJAP.49.086501
  48.  Lee Y.-I., Choa Y.-H. Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate // Journal of Materials Chemistry. 2012. V. 22. № 25. P. 12517– 12522. https://doi.org/10.1039/c2jm31381b
  49.  Kim S.J., Lee J., Choi Y.-H., et al. Effect of copper concentration in printable copper inks on film fabrication // Thin Solid Films. 2012. V. 520. № 7. P. 2731–2734. https://doi.org/10.1016/j.tsf.2011.11.056
  50.  Choi Y.-H., Lee J., Kim S.J., et al. Highly conductive polymer-decorated Cu electrode films printed on glass substrates with novel precursor-based inks and pastes // Journal of Materials Chemistry. 2012. V. 22. № 8. P. 3624– 3631. https://doi.org/10.1039/c2jm15124c
  51.  Xu W., Wang T. Synergetic effect of blended alkylamines for copper complex ink to form conductive copper films // Langmuir. 2017. V. 33. № 1. P. 82–90. https://doi.org/10.1021/acs.langmuir.6b03668
  52.  Paquet C., Lacelle T., Liu X., et al. The role of amine ligands in governing film morphology and electrical properties of copper films derived from copper formate-based molecular inks // Nanoscale. 2018. V. 10. № 15. P. 6911–6921. https://doi.org/10.1039/C7NR08891D
  53.  Shin D.-H., Woo S., Yem H., et al. A self-reducible and alcohol-soluble copper-based metal–organic decomposition ink for printed electronics // ACS Applied Materials & Interfaces. 2014. V. 6. № 5. P. 3312–3319. https://doi.org/10.1021/am4036306
  54.  Farraj Y., Grouchko M., Magdassi S. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics // Chemical Communications. Royal Society of Chemistry, 2015. V. 51. № 9. P. 1587–1590. https://doi.org/10.1039/C4CC08749F
  55.  Li D., Sutton D., Burgess A., et al. Conductive copper and nickel lines via reactive inkjet printing // Journal of Materials Chemistry. 2009. V. 19. № 22. P. 3719–3724. https://doi.org/10.1039/b820459d
  56.  Abulikemu M., Da’as E.H., Haverinen H., et al. In situ synthesis of self‐assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing // Angewandte Chemie International Edition. 2014. V. 53. № 2. P. 420–423. https://doi.org/10.1002/anie.201308429
  57.  Hong J., Yick S., Chow E., et al. Direct plasma printing of nano-gold from an inorganic precursor // Journal of Materials Chemistry C. 2019. V. 7. № 21. P. 6369–6374. https://doi.org/10.1039/C9TC01808E
  58.  Nur H.M., Song J.H., Evans J.R.G., et al. Ink-jet printing of gold conductive tracks // Journal of Materials Science: Materials in Electronics. 2002. V. 13. № 4. P. 213–219. https://doi.org/10.1023/a:1014827900606
  59.  Yamauchi T., Tsukahara Y., Sakamoto T., et al. Microwave-Assisted synthesis of monodisperse nickel nanoparticles using a complex of nickel formate with long-chain amine ligands // Bulletin of the Chemical Society of Japan. 2009. V. 82. № 8. P. 1044–1051. https://doi.org/10.1246/bcsj.82.1044
  60.  Mahajan C.G., Alfadhel A., Irving M., et al. Magnetic field patterning of nickel nanowire film realized by printed precursor inks // Materials. 2019. V. 12. № 6. P. 928. https://doi.org/10.3390/ma12060928
  61.  Yabuki A., Ichida Y., Kang S., et al. Nickel film synthesized by the thermal decomposition of nickel-amine complexes // Thin Solid Films. 2017. V. 642. P. 169–173. https://doi.org/10.1016/j.tsf.2017.09.040
  62.  Xie W., Li X., Zhang M., et al. Formulating nickel metal organic decomposition ink with low sintering temperature and high conductivity for ink jet printing applications // Journal of Materials Science: Materials in Electronics. 2023. V. 34. № 27. P. 1872. https://doi.org/10.1007/s10854-023-11284-y
  63.  Xie W., Li X., Zhang M., et al. A Nickel metal-organic-decomposition ink of nickel-ethanolamine complex leading to highly conductive nickel patterns for printed electronic applications // Thin Solid Films. 2022. V. 744. P. 139081. https://doi.org/10.1016/j.tsf.2022.139081
  64.  Layani M., Gruchko M., Milo O., et al. Transparent conductive coatings by printing coffee ring arrays obtained at room temperature // ACS Nano. 2009. V. 3. № 11. P. 3537–3542. https://doi.org/10.1021/nn901239z
  65.  Magdassi S., Grouchko M., Kamyshny A. Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability // Materials. 2010. V. 3. № 9. P. 4626–4638. https://doi.org/10.3390/ma3094626
  66.  Lee J.J., Park J.C., Kim M.H., et al. Silver complex inks for ink-jet printing: The synthesis and conversion to a metallic particulate ink // Journal of Ceramic Processing Research. 2007. V. 8. № 3. P. 219–223.
  67.  Ryu B.H., Choi Y., Park H.S., et al. Synthesis of highly concentrated silver nanosol and its application to inkjet printing // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005. V. 270–271. P. 345–351. https://doi.org/10.1016/j.colsurfa.2005.09.005
  68.  Vaseem M., Lee K.M., Hong A.R., et al. Inkjet Printed fractal-connected electrodes with silver nanoparticle ink // ACS Applied Materials and Interfaces. 2012. V. 4. № 6. P. 3300–3307. https://doi.org/10.1021/am300689d
  69.  Yung K.C., Gu X., Lee C.P., et al. Ink-jet printing and camera flash sintering of silver tracks on different substrates // Journal of Materials Processing Technology. 2010. V. 210. № 15. P. 2268–2272. https://doi.org/10.1016/j.jmatprotec.2010.08.014
  70.  Milardović S., Ivaniševic I., Rogina A., et al. Synthesis and electrochemical characterization of AgNP ink suitable for inkjet printing // International Journal of Electrochemical Science. 2018. V. 13. № 11. P. 11136–11149. https://doi.org/10.20964/2018.11.87
  71.  Jeong S., Song H.C., Lee W.W., et al. Preparation of aqueous ag ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film // Journal of Applied Physics. 2010. V. 108. № 10. P. 102805. https://doi.org/10.1063/1.3511686
  72.  Ahn B.Y., Lewis J.A. Amphiphilic Silver particles for conductive inks with controlled wetting behavior // Materials Chemistry and Physics. 2014. V. 148. № 3. P. 686–691. https://doi.org/10.1016/j.matchemphys.2014.08.035
  73.  Magdassi S., Grouchko M., Berezin O., et al. Triggering the sintering of silver nanoparticles at room temperature // ACS Nano. 2010. V. 4. № 4. P. 1943–1948. https://doi.org/10.1021/nn901868t
  74.  Grouchko M., Kamyshny A., Mihailescu C.F., et al. Conductive inks with a “built-in” mechanism that enables sintering at room temperature // ACS Nano. 2011. V. 5. № 4. P. 3354–3359. https://doi.org/10.1021/nn2005848
  75.  Kim J.H., Lee S., Wajahat M., et al. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures // Nanoscale. 2019. V. 11. № 38. P. 17682–17688. https://doi.org/10.1039/c9nr05894j
  76.  Jo Y., Oh S.-J., Lee S.S., et al. Extremely flexible, printable Ag conductive features on PET and paper substrates via continuous millisecond photonic sintering in a large area // J. Mater. Chem. 2014. V. 2. № 45. P. 9746–9753. https://doi.org/10.1039/C4TC01422G
  77.  Bulavchenko A.I., Arymbaeva A.T., Demidova M.G., et al. Synthesis and concentration of organosols of silver nanoparticles stabilized by AOT: Emulsion versus microemulsion // Langmuir. 2018. V. 34. № 8. P. 2815–2822. https://doi.org/10.1021/acs.langmuir.7b04071
  78.  Bulavchenko A.I., Pletnev D.N. Electrophoretic concentration of nanoparticles of gold in reversed micellar solutions of AOT // Journal of Physical Chemistry C. 2008. V. 112. № 42. P. 16365–16369. https://doi.org/10.1021/jp805268w
  79.  Поповецкий П.С., Арымбаева А.Т., Бордзиловский Д.С., Майоров А.П., Максимовский Е.А., Булавченко А.И. Синтез и электрофоретическое концентрирование наночастиц серебра в обратных эмульсиях бис(2-этилгексил)сульфосукцината натрия и получение на их основе проводящих покрытий методом селективного лазерного спекания // Коллоидный ЖУрнал. 2019.Т 81. № 4. С. 501–507. https://doi.org/10.1134/S0023291219040116
  80.  Воробьев С.А., Флерко М.Ю., Новикова С.А., et al. Синтез И Исследование Сверхконцентрированных Органозолей Наночастиц Серебра // Коллоидный Журнал. 2024. V. 86. № 2. P. 193–203. https://doi.org/10.31857/s0023291224020047
  81.  Carey Lea M. Allotropic forms of silver // American Journal of Science. 1889. V. s3–38. № 223. P. 476–491. https://doi.org/10.2475/ajs.s3-38.223.47
  82.  Vorobyev S.A., Likhatski M.N., Romanchenko A.S., et al. The influence of the reaction conditions on the size of silver nanoparticles in Carey Lea’s concentrated sols // Journal of Siberian Federal University. Chemistry. 2020. V. 13. № 3. P. 372–384. https://doi.org/10.17516/1998-2836-0190
  83.  Vorobyev S.A., Likhatski M.N., Romanchenko A.S., et al. Fabrication of extremely concentrated silver hydrosols without additional stabilizers // ACS Sustainable Chemistry & Engineering. 2020. V. 8. № 46. P. 17225–17233. https://doi.org/10.1021/acssuschemeng.0c06006
  84.  Kang J.S., Ryu J., Kim H.S., et al. Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light // Journal of Electronic Materials. 2011. V. 40. № 11. P. 2268–2277. https://doi.org/10.1007/s11664-011-1711-0
  85.  Perelaer J., De Laat A.W.M., Hendriks C.E., et al. Inkjet-printed silver tracks: low temperature curing and thermal stability investigation // Journal of Materials Chemistry. 2008. V. 18. № 27. P. 3209–3215. https://doi.org/10.1039/b720032c
  86.  Titkov A.I., Bukhanets O.G., Gadirov R.M., et al. Conductive inks for inkjet printing based on composition of nanoparticles and organic silver salt // Inorganic Materials: Applied Research. 2015. V. 6. № 4. P. 375–381. https://doi.org/10.1134/S2075113315040243
  87.  Yukhin Y.M., Titkov A.I., Kulmukhamedov G.K., et al. Synthesis of silver nanoparticles via reduction of silver carboxylates by ethylene glycol // Theoretical Foundations of Chemical Engineering. 2015. V. 49. № 4. P. 490–496. https://doi.org/10.1134/S004057951504020X
  88.  Титков А.И., Гадиров Р.М., Никонов С.Ю., et al. Селективное лазерное спекание токопроводящих чернил для струйной печати на основе композиции наночастиц и органической соли серебра // Известия Высших учебных заведений. Физика. 2017. V. 60. № 10. P. 24–29.
  89.  Titkov A.I., Shundrina I.K., Gadirov R.M., et al. Thermal and laser sintering of a highly stable inkjet ink consisting of silver nanoparticles stabilized by a combination of a short chain carboxylic acid and a polymeric dispersant // Materials Today: Proceedings. 2018. V. 5. № 8. P. 16042–16050. https://doi.org/10.1016/j.matpr.2018.05.049
  90.  Park B.K., Kim D., Jeong S., et al. Direct writing of copper conductive patterns by ink-jet printing // Thin Solid Films. 2007. V. 515. № 19. P. 7706–7711. https://doi.org/10.1016/j.tsf.2006.11.142
  91.  Jason N.N., Shen W., Cheng W. Copper nanowires as conductive ink for low-cost draw-on electronics // ACS Applied Materials and Interfaces. 2015. V. 7. № 30. P. 16760–16766. https://doi.org/10.1021/acsami.5b04522
  92.  Dharmadasa R., Jha M., Amos D.A., et al. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films // ACS Applied Materials and Interfaces. 2013. V. 5. № 24. P. 13227–13234.https://doi.org/10.1021/am404226e
  93.  Hokita Y., Kanzaki M., Sugiyama T., et al. High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks // ACS Applied Materials & Interfaces. 2015. V. 7. № 34. P. 19382–19389. https://doi.org/10.1021/acsami.5b05542
  94.  Yuki Kawaguchi Y.K., Ryuichi R., Kawasaki H. Formate-free metal-organic decomposition inks of copper particles and self-reductive copper complex for the fabrication of conductive copper films // Journal of Coating Science and Technology. 2016. V. 3. № 2. P. 56–61. https://doi.org/10.6000/2369-3355.2016.03.02.2
  95.  Yonezawa T., Tsukamoto H., Yong Y., et al. Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu2+ -alkanolamine metallacycle compounds for electrically conductive layer formation // RSC Advances. Royal Society of Chemistry, 2016. V. 6. № 15. P. 12048–12052. https://doi.org/10.1039/C5RA25058G
  96.  Lee B., Kim Y., Yang S., et al. A low-cure-temperature copper nano ink for highly conductive printed electrodes // Current Applied Physics. 2009. V. 9. № 2. P. e157–e160. https://doi.org/10.1016/j.cap.2009.03.008
  97.  Kang J.S., Kim H.S., Ryu J., et al. Inkjet printed electronics using copper nanoparticle ink // Journal of Materials Science: Materials in Electronics. 2010. V. 21. № 11. P. 1213–1220. https://doi.org/10.1007/s10854-009-0049-3
  98.  Kim H.S., Dhage S.R., Shim D.E., et al. Intense pulsed light sintering of copper nanoink for printed electronics // Applied Physics A: Materials Science and Processing. 2009. V. 97. № 4. P. 791–798. https://doi.org/10.1007/s00339-009-5360-6
  99.  Joo S.-J., Hwang H.-J., Kim H.-S. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics // Nanotechnology. 2014. V. 25. № 26. P. 265601. https://doi.org/10.1088/0957-4484/25/26/265601
  100.  Joo S.J., Park S.H., Moon C.J., et al. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique // ACS Applied Materials and Interfaces. 2015. V. 7. № 10. P. 5674–5684. https://doi.org/10.1021/am506765p
  101.  Ryu C.H., Joo S.J., Kim H.S. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping // Applied Surface Science. 2016. V. 384. P. 182–191. https://doi.org/10.1016/j.apsusc.2016.05.025
  102.  Benson J., Fung C.M., Lloyd J.S., et al. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications // Nanoscale Research Letters. 2015. V. 10. P. 127. https://doi.org/10.1186/s11671-015-0835-1
  103.  Pavithra M., Muruganand S., Parthiban C. Development of novel paper based electrochemical immunosensor with self-made gold nanoparticle ink and quinone derivate for highly sensitive carcinoembryonic antigen // Sensors and Actuators B: Chemical. 2018. V. 257. P. 496–503. https://doi.org/10.1016/j.snb.2017.10.177
  104.  Deng M., Zhang X., Zhang Z., et al. A gold nanoparticle ink suitable for the fabrication of electrochemical electrode by inkjet printing // Journal of Nanoscience and Nanotechnology. 2014. V. 14. № 7. P. 5114–5119. https://doi.org/10.1166/jnn.2014.7208
  105.  Cui W., Lu W., Zhang Y., et al. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. V. 358. № 1–3. P. 35–41. https://doi.org/10.1016/j.colsurfa.2010.01.023
  106.  Mekhmouken S., Battaglini N., Mattana G., et al. Gold nanoparticle-based eco-friendly ink for electrode patterning on flexible substrates // Electrochemistry Communications. 2021. V. 123. P. 106918. https://doi.org/10.1016/j.elecom.2021.106918
  107.  Podlipskaya T.Y., Shaparenko N.O., Demidova M.G., et al. The role of reverse micelles and metal-surfactant interactions in the synthesis of gold ink in reverse emulsions stabilized by AOT, tergitol NP-4 and Span 80 // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 649. № April. P. 129452. https://doi.org/10.1016/j.colsurfa.2022.129452
  108.  Bacalzo N.P., Go L.P., Querebillo C.J., et al. Controlled microwave-hydrolyzed starch as a stabilizer for green formulation of aqueous gold nanoparticle ink for flexible printed electronics // ACS Applied Nano Materials. 2018. V. 1. № 3. P. 1247–1256. https://doi.org/10.1021/acsanm.7b00379
  109.  Reiser B., González-García L., Kanelidis I., et al. Gold nanorods with conjugated polymer ligands: Sintering-free conductive inks for printed electronics // Chemical Science. 2016. V. 7. № 7. P. 4190–4196. https://doi.org/10.1039/c6sc00142d
  110.  Ye X., Zheng C., Chen J., et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods // Nano Letters. 2013. V. 13. № 2. P. 765–771. https://doi.org/10.1021/nl304478h

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».