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Abstract. Antibacterial coatings are used in the food and textile industries, in the construction industry, 
in biotechnology and medicine. The review considers the main types of coatings that prevent fouling 
with biomacromolecules and microorganisms: anti-adhesive, contact, release-based, multifunctional 
and intelligent (“smart”) coatings. For each type of coating, the most relevant and effective active 
substances and their mechanism of action are described. Despite the widespread use of anti-adhesive 
surfaces and contact coatings, they have many disadvantages that limit the scope of their application 
and reduce activity and durability. Numerous studies show that multifunctional and intelligent coatings 
have high potential for practical application and further research on their modification to obtain 
universal and cost-effective coatings. The main problem of the practical application of such surfaces 
is the imperfection of methods for assessing the stability and antibacterial properties of the coating in 
laboratory conditions. 
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INTRODUCTION

The original role of surface coatings in industrial 
applications was to provide corrosion protection and 
mechanical resistance of materials [1]. Recently, there 
has been great interest in developing surfaces that reduce 
microbial adhesion and provide biocidal activity or exhibit 
combined effects [2–5]. Antimicrobial coatings are 
materials and substances that modify the surface of another 
material and give them functions that limit or prevent the 
growth and multiplication of microorganisms without 
changing the characteristics of the material itself [6, 7]. 
To create such coatings, various physical and chemical 
methods are used to ensure the formation of homogeneous 
layers. For coatings to be effective, they must include active 
compounds with a wide range of antimicrobial activity, 
including antibiotic-resistant microorganisms [8].

Bacterial resistance to antibiotics is one of the most 
important problems of modern medicine. Bacterial strains 
can modify the targets of antibiotic action, inhibit the 
penetration and active excretion of antibiotics from the 
microbial cell (efflux), form metabolic “shunts”, and 
produce enzymes that destroy antimicrobial drugs [9, 10]. 
A particularly alarming factor is the ubiquity of bacterial 
strains with multiple resistance to antimicrobial agents, 

as well as the ability of microorganisms to form biofilms 
[11]. Bacterial biofilms are aggregations of bacteria in 
a self-secreted polymer matrix. They are formed both 
on biological and non-biological surfaces and are an 
important step in the emergence of persistent infections. 
Within the biofilm, microbes have increased resistance to 
immune system factors, antibiotics and disinfectants [12]. 
The matrix of bacterial biofilms slows down the diffusion of 
antibiotics, and changes in the chemical microenvironment 
within the biofilm leads to the formation of persistent forms 
of bacteria that have increased resistance to antimicrobial 
agents [13, 14]. Therefore, to combat antibiotic resistance, 
it is necessary to search for new antibacterial agents that 
would be effective against isolated bacterial strains and 
bacterial communities forming biofilms.

The development and creation of coatings with 
antimicrobial properties is of great practical importance 
and finds application in various fields [15–17]. For 
example, food packaging systems containing antimicrobial 
agents can be used not only to reduce the number of 
pathogens, but also to combat microorganisms that 
cause food spoilage [18]. Such packaging isolates food 
from the environment and suppresses microbial growth 
without affecting its composition [19]. Due to the 
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slow and/or controlled release of antibacterial agents, 
their inhibition during transportation and storage is 
ensured, which increases the shelf life of foods [20, 
21]. In healthcare facilities, antimicrobial coatings are 
used as a modern hygienic method to control bacterial 
contamination [22–24]. Current coatings against bacterial 
fouling and contamination are capable of: controlling 
pathogen populations on surfaces and minimizing the 
risks of resistance to their constituent antimicrobial agents; 
being stable and (eco)toxicologically safe; affordable 
and easily implemented in hospital settings [25–27]. 
Recent advances in the architectonics of nanomaterials 
have led to the emergence of antibacterial nanoparticles, 
which can be useful in the textile industry to enhance 
the antibacterial properties of fabrics, control the spread 
of pathogenic bacteria and associated infections among 
humans, and safe for human health and the environment. 
Such nanoparticles are introduced into the surface of the 
fabric by plasma technique, laser treatment, cationization, 
and by functionalizing or modifying the surface of the 
textile. Moreover, biosensor nanoparticles are embedded 
into the fabric to monitor human disease states [28–30]. 
The antimicrobial properties of materials are used in 
the construction of institutions where high standards of 
hygiene are required to prevent the formation of bacterial 
biofilms, mold and mildew, and to protect structures 
from biodegradation [31, 32]. Antimicrobial agents are 
introduced by applying paint or coating to the finished 
surface after construction, by mixing inorganic additives 
(metal nanoparticles, metal oxides) with concrete or 
mortar during construction and by mixing antimicrobial 
agents during the manufacture of building materials 
[33]. The creation of a protective layer, in the form of a 
paint or coating, which is active against a wide range of 
microorganisms and stable over a wide pH range is more 
demanded in the construction field [34–36].

Thus, modern antibacterial coatings in the medical 
and food industries must meet such criteria as: efficiency, 
safety and durability. The review considers the main types 
of existing antibacterial coatings, mechanisms of action of 
coatings and their constituent components. Advantages 
and disadvantages for further design of future antimicrobial 
materials are evaluated.

TYPES OF ANTIBACTERIAL COATINGS

Over the past two decades, the attention of scientists 
and biomedical manufacturers has been focused on the 
development of coatings capable of resisting bacterial 
colonization that could be applied to various surfaces and 
devices [37, 38]. Antimicrobial coatings (Fig. 1), depending 
on their mechanism of action, are divided into: contact-
type antimicrobial coatings [39–41] and release-based 
coatings, anti-adhesive antimicrobial coatings [42–45], 
multifunctional coatings [46–48], and smart antimicrobial 
coatings [49–51].

Earlier designs of antibacterial coatings for the strategy 
of preventing bacterial adhesion and subsequent biofilm 

formation were mostly monofunctional. They were based 
on the antibacterial effect inactivating microorganisms in 
contact with the surface or preventing their attachment 
[52, 53]. The first in this field were coatings with copper 
oxide, arsenic, mercury oxide and organoleaf derivatives 
that prevented biofouling of marine vessels [54, 55]. Since 
1906, the development of anti-corrosion and anti-fouling 
paints for marine vessels based on zinc oxide and mercury 
oxide began [56]. In 1954 G.J.M. Der Van Kerk and 
J.G.A. Luijten showed biocidal properties of organotin 
compounds [57], which later became widespread as 
effective antifouling coatings. In 1995, polyurethane 
films containing quaternary ammonium compounds 
were developed, showing high biocidal activity against 
Escherichia coli [58] and polymer coatings modified with 
silver nitrate, which showed antibacterial effect against 
Staphylococcus epidermidis [59]. Lowe A.B. et al. in 
2000 described a statistical copolymer of butyl acrylate 
with sulfobetaines, which when adsorbed on plastic 
disks reduced the adhesion of Pseudomonas aeruginosa, 
macrophages and fibroblasts [60].

Current coatings against bacterial contamination 
and fouling, focus on the synergistic combination 
of antibacterial and anti-adhesion effects in the form 
of multifunctional, smart coatings or interfacial 
materials [61]. The first example of a smart coating 
consisting of zwitterionic polymer derivatives that can 
rapidly switch their chemical structures and possess 
antibacterial, anti-adhesive properties and self-cleaning 
ability was described by Cheng G. et al., 2008 [62]. 
Subsequently, nanostructured coatings composed of 
temperature-sensitive poly N-isopropylacrylamide 
and quaternary ammonium salt were prepared by 
interferometric lithography and surface polymerization, 
which exhibit biocidal properties and the ability to 
release inactivated bacteria in response to temperature 
changes [63]. In 2018, a hybrid film was fabricated by 
successive deposition of a layer of gold nanoparticles and 
a phase transition lysozyme film, which had bactericidal 
activity under near-infrared laser irradiation, and its 
immersion in vitamin C promoted the removal of killed 
bacteria and surface regeneration [64]. In recent years, 
machine learning methods have been actively introduced 
in the development of various coatings. In 2021, a machine 
learning method (using an artificial neural network model 
and a model based on support vector regression) was 
developed to synthesize new anti-adhesive polymer 
brushes that demonstrated excellent resistance to protein 
adsorption at optimal film thickness [65].

Contact-type antibacterial coatings and 
antibacterial release coatings

Bactericidal coatings provide a reliable and simple 
way to prevent biofilm formation by exerting a biocidal 
effect on bacteria attached to the surface or suspended 
near the surface [5]. They are based on the introduction 
of antibacterial agents into the material or on its surface, 
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which through gradual release of agents (Fig. 2b) or contact 
action (Fig. 2a) inactivate, damage or inhibit bacterial 
growth [66, 61]. Different biocides are fixed on the surface 
by dipping the coating in antimicrobial agent, spraying 
and centrifugation, and using layer-by-layer application 
technique or surface modification with different polymers 
[52]. Contact coatings can be divided into inorganic 
and organic coatings. Inorganic antimicrobial coatings 
are represented by nanoparticles of metals and their 
oxides (Ag, Au, Zn, Mg, and Cu) [67] and antibiotics 
(aminoglycosides, quinolones, penicillins, glycopeptides, 
tetracyclines, rifamycins) [68]. Organic antimicrobial 
coatings, are represented by quaternary ammonium salts 
(QAS) [69] and natural organic substances (antimicrobial 
peptides (AMP), enzymes and polysaccharides (chitosan)) 
[70–72]. Metal nanoparticles and their oxides are effective 
antibacterial agents because they can penetrate bacterial 
cells through ion channels and trigger the Fenton reaction 
with the formation of excess reactive oxygen species, 
increase bacterial cell wall permeability and oxidative 
stress in the bacterial cell body; can form secondary toxic 
metabolites, affecting the metabolic activity of bacteria; 
and induce changes in bacterial genetic information 
(e.g., 16S rDNA) [73]. Coatings, releasing antibiotics 
are able to deliver them directly to the site of action, thus 
providing higher efficacy and avoiding high dose antibiotic 
administration, systemic toxicity and development of drug 
resistance [74]. Antibiotics can inhibit bacterial cell protein 
synthesis, DNA replication and transcription by acting 
on DNA topoisomerases II and IV or by binding to RNA 
polymerase, disrupt cell wall peptidoglycan synthesis by 
enzymatic inhibition or by binding to amino acids [75, 
76]. AMPs (Fig. 2c) are considered a promising candidate 
to replace conventional antibiotics because of their broad 
spectrum and nonspecific antibacterial mechanism of 

action [77]. They attach to the surface of the bacterial 
cell membrane, resulting in various forms of membrane 
damage; interfere with DNA and RNA synthesis and 
inhibit enzyme activity, causing bacterial death. In 
addition, AMPs exhibit excellent antibiofilm activity. 
Cationic molecules (e.g., QASs) can effectively kill bacteria 
through contact killing effect [78]. They can first adsorb 
on the bacterial cell wall through electrostatic action and 
then diffuse inward by disrupting the membrane potential, 
resulting in membrane damage, cytoplasmic leakage and 
bacterial death [73]. Chitosan and its derivatives exhibit 
antibacterial activity against fungi, Gram-positive and 
Gram-negative bacteria. The antibacterial activity of this 
polymer may be due to the interaction of amino groups of 
chitosan with the electronegative charges of the bacterial 
cell surface, resulting in the leakage of intracellular 
components [79]. It also exhibits biodegradability, 
biocompatibility, polymorphism and sorption properties 
[80]. Antibacterial enzymes are able to directly attack 
the microorganism, inhibit biofilm formation, degrade 
the biofilm, and/or catalyze reactions that lead to the 
production of antimicrobial compounds [81]. Release-
based surfaces exhibit their antibacterial activity by 
releasing antibacterial agents by diffusion, erosion, 
degradation, or hydrolysis of covalent bonds into the 
environment [82]. The compounds are released from 
the surface of the material and the antibacterial activity 
occurs locally, only where it is needed. Depending 
on the antibacterial agent incorporated in the matrix, 
release-based coatings are capable of releasing antibiotics 
(penicillin, chlortetracycline, streptomycin, vancomycin), 
metal ions and oxides (Ag, Zn, and Cu) and non-metallic 
materials, fluorine (F) [83, 84, 27]. Polymethacrylic 
acid, polyacrylic acid, lactic and glycolic acid-based 
copolymers, hydroxyapatite, polyurethane, hyaluronic 

Fig. 1. Classification of the main types of antibacterial coatings.
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acid, chitosan, and ceramic nanoparticles are used as 
a carrier in such surfaces. Antibacterial release based 
surfaces are prepared by impregnating a porous material 
or coating with the desired antibacterial compound, 
by layer-by-layer application or by plasma spraying of 
polyelectorlites [85, 86, 52].

The main disadvantages of such coatings are the limited 
supply of antibacterial agents, which make the coatings 
unusable once they are depleted, and the toxicity of some 
antibacterial agents (QASs, nanoparticles and metal 
ions). Nanoparticles penetrate cells and subsequently 
exert toxic effects on intracellular structures. They cause 
mitochondrial damage, oxidative stress and autophagy [87, 
88], and in high concentrations, cell necrosis and apoptosis 
[89]. Metal oxides (ZnO, MgO, CuO) are also cytotoxic 
and cause apoptosis, autophagy, oxidative stress and 
necrosis [90]. The accumulation of inactivated bacteria 
and intracellular components not only reduces coating 
efficacy, but can also promote biofilm formation [61] and 
induce immune reactions or inflammation. In addition, 
most biocidal agents are positively charged and can interact 
electrostatically with proteins. Moreover, different biocidal 
methods are based on different killing mechanisms and 
each method is effective for a specific type of bacteria. 
With the emergence of multidrug-resistant bacterial 
strains, approaches using a single killing mechanism are 
becoming less effective [5]. For example, silver-based 
materials have a strong bactericidal effect, but their activity 
decreases over time as the coatings continuously release 
the biocidal agent. In the case of polycationic polymer-
based coatings, surface treatment with a cationic surfactant 
may be required to restore antimicrobial activity. Low 
molecular weight bactericidal agents often cause resistance 
and gradually lose their effectiveness over time [91].

Anti-adhesion antimicrobial coatings

Surface characteristics of materials, including surface 
charge, free energy, morphology, wettability, etc., have an 
important influence on bacterial adhesion [92]. Bacteria 
can attach to various surfaces and form biofilms through 
non-specific interactions such as hydrogen bonds, 
electrostatic forces, hydrophobic interactions, and van 
der Waals forces (Fig. 3a). Thus, bacterial adhesion 
on the surface of implanted devices contributes to 
device-associated infections and is the main reason 
for the development of anti-adhesion coatings [93]. 
To prevent the development of biofilms on biomaterial 
surfaces, the surface must be able to prevent initial 
bacterial adhesion [22]. Anti-adhesion coatings are 
functional coatings created by modifying the surface of 
materials by changing their physicochemical properties 
(roughness, degree of wettability, charge, etc.), which 
prevents the adhesion of bacteria, fungi and proteins 
(Fig. 3b) [94]. The action of such coatings is based 
on steric, electrostatic and superhydrophobic effects, 
which can be observed on hydrophilic, superhydrophilic, 
charged and superhydrophobic surfaces, respectively 

(Fig. 3c) [52]. Hydrophilic surfaces prevent the 
attachment of cells and bacteria due to the fact that 
they are covered by a layer of water molecules that are 
closely hydrogen bonded to the hydrophilic material 
and act as a physical and energetic barrier that must be 
overcome for adsorption. Hydrophilic polymers can 
also inhibit bacterial attachment to some extent, but 
high antifouling properties are acquired only when steric 
repulsion complements surface hydration [95]. Thus, 
highly hydrated polymers such as polyethylene glycol 
(PEG), neutral and hydrophilic polymers poly(2-alkyl-
2-oxazoline) have demonstrated the ability to reduce 
bacterial and protein adhesion through steric hindrance 
[96, 97]. Hydrophilic coatings are prepared by physical, 
chemical adsorption, direct covalent attachment and 
block or grafted copolymerization [98]. Laser treatment 
of metal-based coatings with antibacterial properties 
makes it possible to obtain superhydrophilic coatings. 
In the zone of laser beam exposure the surface is 
heated and melting, sublimation and explosive ablation 
of the material takes place. At the same time, metal 
particles are removed from the surface and subsequently 
deposited, forming a micro-relief around the impact 
zone in the form of micro- and nanoparticles. Due 
to the high wettability of superhydrophilic coatings, 
the contact area is increased and metal ions from the 
formed nanoparticles are more efficiently transported 
into the liquid causing oxidative stress of bacterial 
cells. In addition, the formation of hierarchical surface 
porosity leads to bacterial death as a result of perforation 
and deformation of the membrane by the nanotexture 
elements and loss of intracellular f luid [99–101]. 
Compared to hydrophilic polymers, the interaction of 
bound water through ionic solvation is stronger than 
the hydrogen bonded water layer, which enhances the 
antifouling nature of zwitterionic surfaces [102]. Surfaces 
functionalized with zwitterionic polymers, which have a 
uniform distribution of anionic and cationic groups along 
their main chain in their structure, exhibit antifouling 
properties. These include polymethacryloyloxyethyl
phosphorylcholine, polysulfobetainmethacrylate and 
polysulfobetainacrylamide as they contain cationic 
quaternary ammonium salt on the one hand and 
anionic carboxylate, phosphate and sulfate groups on 
the other hand, respectively [103]. In addition to the 
steric hindrance effect of this hydration layer, the cationic 
groups can also kill bacteria on contact. In addition, 
the surfaces functionalized with zwitterionic polymers 
are more versatile and stable regardless of temperature 
and salt concentration than PEG functionalization. 
Consequently, these polymers are widely used as 
antibacterial coatings [104]. Superhydrophobic surfaces 
have attracted much attention for their excellent self-
cleaning properties and potential applications in various 
industries [105]. The water contact angle of such surfaces 
exceeds 150° and hence they are difficult to wet. The 
superhydrophobicity reduces the adhesion force between 
bacteria and the surface and facilitates the removal of 
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Fig. 2. a – Schematic representation of the mechanism of action of contact-type antibacterial coatings; b – Schematic 
representation of the mechanism of action of antibacterial coatings based on release; c – Images of viable cells (green) 
and dead bacteria (red) of S. sanguinis, L. salivarius and dental plaque obtained by confocal microscopy with 20x objective 
magnification after 4 weeks of incubation at 37°C (1) on titanium surface, (2) on titanium surface with silver electrodeposition, 
(3) on titanium surface coated with silane triethoxysilylpropylantharic anhydride, with immobilized hLf1-11 peptide. 
Reproduced from [39], with permission of the American Chemical Society, 2015.
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initially adhered bacteria before biofilm formation [106, 
52, 22]. This phenomenon is attributed to two physical 
principles: low surface energy and rough structures at the 
microscopic scale. Chemistry and surface topography 
are the main factors that interfere with interactions at 
the liquid–solid interface. Surface energy affects the 
adhesion of substances to the interface, including liquids 
and microorganisms. Low surface energy reduces the 
work of adhesion and hence increases hydrophobicity 
[107]. Superhydrophobic surfaces are achieved by 
preparing micro/nanostructures and then passivating 
them with low surface energy molecules [7]. The 
methods to obtain superhydrophobic antifouling coatings 
include chemical and physical etching, immersion 
method, sol-gel method, chemical vapor deposition, 

photolithography, centrifugation, electrospinning, layer-
by-layer deposition, and/or a combination of these [108]. 
However, superior durability of functional properties 
for such surfaces is demonstrated by the laser texturing 
method [109, 110].

Antifouling coatings only prevent bacterial adhesion, 
not eliminate it (Fig. 3d). Therefore, over time there is an 
increase in the concentration of planktonic bacteria in the 
substrate, which contributes to bacterial contamination 
and leads to infections. In addition, hydrophilic polymers 
can be gradually neutralized, passivated or degraded by 
other compounds such as proteins, salts and amphiphiles. 
Any localized defects in superhydrophobic coatings can 
act as local adhesion sites for bacteria with subsequent 
biofilm formation.

Fig. 3. a – Electron micrograph of a 7-day S. aureus biofilm on an uncoated surface; b – Electron micrograph of a polydodecyl 
methacrylate-polyethylene glycol methacrylate-acrylic acid coating preventing biofilm formation from S. aureus for 7 days. 
Reproduced from [43], with permission from the American Chemical Society, 2017; c – Schematic representations of anti-
adhesion coatings. (1) Hydrophilic polymers, (2) zwitterionic coatings, (3) superhydrophobic coatings, water contact angle 
greater than 150° like in a lotus leaf. Reproduced from [93], with permission of John Wiley & Sons, Inc., 2020; d – Schematic 
representation of the mechanism of action of the anti-adhesion coating.
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Multifunctional antimicrobial coatings

Advances in antibacterial and antifouling coatings have 
provided the basis for the development of multifunctional 
coatings [111–113]. They represent a class of antimicrobial 
materials that, in addition to inactivating bacteria, have 
additional capabilities such as long-term activity, stability, 
and recoverability. Various studies have shown that such 
coatings can reduce the number of bacteria on a surface 
by more than 99% compared to an uncoated surface 
[114–116]. The mechanism of action of multifunctional 
antibacterial coatings (Fig. 4a) includes: antibiofouling, 
bactericidal and removal of dead and/or live attached 
bacteria. Thus, the surface can resist or prevent the 
initial adhesion and spread of bacteria by steric and 
electrostatic repulsion or by reduced surface energy, 
and if bacteria make contact or partially attach to it, the 
bactericidal additives contained in the coatings destroy 
them (Fig. 4b, c) [117, 118]. Depending on the method 
used to incorporate antibacterial agents into anti-
adhesion materials, such surfaces can be divided into 
three categories: bound to hydrophilic polymers, layer-
by-layer applied or retained in and released from a non-
fouling matrix. Natural and synthetic chemicals such 
as QASs compounds, antimicrobial enzymes, AMPs, 
chitosan and bacteriophages can be used as antibacterial 
agents [119]. Such coatings are prepared by sequential layer 
deposition, chemical modification, plasma deposition, 
covalent binding, conjugation, immobilization and graft 
polymerization [120].

Despite the high eff iciency of multifunctional 
coatings, there are still many unsolved problems in 
the practice of their application and manufacture. 
Bactericidal agents included in the composition of such 
coatings have disadvantages related to storage stability, 
long-term effectiveness, biocompatibility, cost and 

labor intensity of their introduction into the coating 
composition. In addition, it is quite difficult to select 
materials for coating development that exhibit good 
biocidal activity, bacterial resistance properties and 
removal of dead bacteria. When using multifunctional 
coatings on medical devices, it is necessary to consider 
their composition, as it is not always the case that 
materials that combine antibacterial and anti-adhesive 
properties can be a universal means of combating 
bacterial infections. For example, the use of anti-
adhesive materials is inadmissible in the manufacture 
of orthopedic and dental implants, because the surfaces 
must inhibit bacterial colonization and simultaneously 
promote osteoblast adhesion [121]. At the same time, 
the use of anti-adhesive materials in the fabrication of 
multifunctional coatings for urinary and intravascular 
catheters enhances the bactericidal properties of the 
surface because they do not require special conditions 
in addition to antibacterial properties [122]. Moreover, 
for practical applications, surface fabrication should 
be simple, inexpensive and reproducible. For objects 
in contact with seawater, it is essential that the 
surfaces demonstrate enhanced corrosion resistance 
and durability, as well as resistance to fouling by 
various organisms that may colonize any underwater 
surface [123]. It should be noted that for biomedical 
applications, the toxic effects of antibacterial surfaces 
need to be determined first and their biocompatibility 
improved [124].

Intelligent antimicrobial coatings

In recent years, smart antibacterial coatings have been 
developed that combine: anti-adhesion, bactericidal and 
self-cleaning functions, and realize controlled release 

Fig. 4. a – Schematic representation of the mechanism of action of multifunctional antibacterial coating; b – Antibacterial 
activity of uncoated and coated cotton fabrics containing polyethylenimine, phytic acid, iron ion (Fe3+) and dimethyloctadecyl 
[3-trimethoxysilyl-propyl] ammonium chloride against E. coli and S. aureus, respectively; c – Optical images of water droplets 
placed on uncoated and coated cotton fabrics, respectively. E. coli and S. aureus, respectively; c – Optical images of water 
droplets placed on uncoated and multifunctional coated cotton fabrics, respectively. Reproduced from [48], with permission 
from Elsevier B.V., 2022.
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of antibacterial agents through physical and chemical 
approaches, thereby achieving prolonged exposure, 
reducing potential side effects (Fig. 5a). Thus, smart 
antibacterial coatings are considered to be  most optimal 
of all existing coatings. They can be categorized into 
endogenously and exogenously responsive types [125]. 
Endogenously responsive coatings primarily involve 
response to pH and bacterial secretions. The former is 
mainly stimulated through acidification of the medium 
by bacterial infection [126], whereas the latter refers to 
the response to various enzymes (such as phospholipase, 
hyaluronidase, cholesterol esterase and metalloprotease) 
or toxins secreted during the metabolic process [127, 
128]. Conventional pH-sensitive coatings are produced 

by electrostatic interactions. For example, coatings 
containing negatively charged molecules and positively 
charged antibiotics are prepared by layer-by-layer self-
assembly [129–132], or acid-sensitive Schiff bases [133, 
134], metal coordination bonds [135], and boronic acid 
esters [136, 137] are used for synthesis. In addition, pH-
sensitive coatings can be derived from reactive binding 
between nanoparticles and drugs, as well as sensitive 
molecules such as polymethacrylic acid [138]. Exogenously 
stimulated coatings exhibit antibacterial activity when 
stimulated by external conditions. Such coatings can 
solve the problems of poor stability, uncontrolled drug 
release and emergence of bacterial resistance. Exogenously 
sensitive coatings include temperature responsive surfaces, 

Fig. 5. a – Schematic representation of the mechanism of action of the smart antibacterial coating; b – Electron 
micrographs of E. coli and S. aureus cultured with carbon capsules modified with polyethylene glycol and doped with 
nitrogen with and without 808 nm laser irradiation. Reproduced from [138], with permission from the American Chemical 
Society, 2018; c – Confocal microscopy images of viable cells (green) and dead bacteria (red) of S. aureus obtained using 
confocal microscopy of uncoated 3D nanoporous surface, tannic acid-coated 3D nanoporous surface, tannic acid and 
gentamicin-coated 3D nanoporous surface, respectively. Reproduced from [129], with permission from the American 
Chemical Society, 2015.

)()a( c

( )b

t pH

200 µm

100 µm

100 µm

100 µm

100 µm

E. coli

S. aureus



	 SURFACE MODIFIERS FOR REDUCING BACTERIAL CONTAMINATION � 61

COLLOID JOURNAL Vol. 87 No. 1 2025

photosensitive surfaces that are activated by light and 
bioelectric surfaces that are activated by an external electric 
field [139–141]. Such coatings are obtained by covalent 
bonding, vapor deposition, multilayer films or hydrogel 
coatings containing enzyme-sensitive components, 
photopolymerization, or a combination of several methods 
[127].

The analysis of the conducted studies indicates a great 
potential of smart antibacterial coatings for practical 
applications, but there is a lot of room for improvement 
of current coating methods to make them more effective, 
versatile and cost-effective. Promising in this direction 
would be the development of smart coatings that have the 
ability to activate biocidal activity in response to changes in 
certain biological microenvironments, as well as improving 
their stability, durability and reducing cytotoxicity [142].

CONCLUSION

In the last decades, active research has been conducted 
to improve antibacterial coatings and give them new 
properties such as the ability to regenerate and clean up 
dead bacteria. In addition, the combination of several 
antibacterial agents or the combination of different types 
of antibacterial coatings improve their effectiveness and 
durability. For example, in multifunctional materials where 
more than one protection strategy (superhydrophobic 
and anti-adhesive)  incorporated into the coatings, 
bacterial adhesion is more effectively prevented, and if 
the compositions contain released antimicrobial agents, 
microbial cells will be inactivated upon contact with them. 
In addition, the need and use of an antimicrobial agent 
is reduced, and the service life of such a coating can be 
significantly longer than that of contact-type antimicrobial 
surfaces. Smart coatings based on the activation of 
antibacterial agents in response to changing environmental 
factors make surfaces even more effective durable, 
environmentally friendly, and in demand. Thus, further 
research on next-generation antibacterial coatings should 
focus on finding new and extending existing mechanisms of 
action against bacteria and developing additional pathways 
for their activation, as well as obtaining surfaces with 
multiple integrated functions.

The field of antimicrobial and antifouling surface 
development is a promising one and the potential for 
large and rapid impact through the implementation of 
developed technologies is evident. A large number of 
developments and studies described in the literature in 
the field of antimicrobial coatings do not reach practical 
application or even clinical trials. This is due to the fact 
that in laboratory conditions for testing antibacterial 
materials it is difficult to create conditions that occur 
in living organisms. The use of artificial intelligence 
and digital tools can help solve these problems. Thus 
analytical tools help to quickly and accurately process and 
analyze huge amounts of data, and artificial intelligence, 
by analyzing the chemical structure of coatings, helps to 
determine the toxicity of materials and select compounds 

for inclusion, saving time, resources and minimizing the 
risks of adverse effects in clinical trials.
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