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RHEOLOGY OF STRUCTURED LIQUIDS.
FLOW REGIMES AND RHEOLOGICAL EQUATIONS
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Abstract. A system of rheological equations is presented, obtained on the basis of structural-kinetic
representations, which describes viscous and elastic properties of structured liquids, namely concentrated
suspensions, emulsions, micellar solutions, solutions and polymer melts. The structural model equations
hold for equilibrium steady-state flow and for equilibrium oscillating flow. The equations are suitable for
approximating rheological curves ©(y), N;(}), G"(®), G'(»), at individual intervals of shear rate or oscillation
frequency. Each such interval corresponds to a certain state of the structure. As an example, the results of
approximation of shear viscosity curves for polymer solution, micellar solution and emulsion are given.
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INTRODUCTION

At present, there are no generally accepted views
on the problem of non-Newtonian flow. Types of flow
in suspensions, emulsions, micellar solutions, polymer
solutions and melts are considered separately. Many local
models and rheological equations have been proposed for
each type of these structured systems [1—4].

Two main classes of rheological models can be
distinguished, which consider fluid media either as
homogeneous, homogeneous, or as heterogeneous,
possessing some structure. In the first case, the methods
of theoretical rheology based on continuum mechanics
are used. Some physical justification of such rheological
models is provided by mechanical models composed
of springs, dampers, dry friction elements (Maxwell,
Kelvin—Voigt, etc.).

In the second case, models describing aggregates of
particles or associations of macromolecules that move in
a viscous medium are used. The hydrodynamic approach
is based on the laws of flow of particles and aggregates with
viscous fluid and on the consideration of hydrodynamic forces
that break the aggregates. The kinetic approach is based on
kinetic equations describing the processes of formation and
destruction of particle aggregates in shear flow.

The current state of the problem of non-Newtonian
flow is described in various monographs, e.g., [5—7].
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We have proposed a structural rheological model [8, 9]
that allows us to describe the rheological behavior of
various disperse and polymeric systems under steady-state
and oscillatory flow.

The model is obtained by modifying and combining
the well-known models of Casson [10] and Cross [11]
(see Appendix 1).

In this paper, rheological equations derived from a
unified structural approach will be fully summarized for
both steady-state and oscillatory flow. These rheological
equations are suitable for describing both viscous and
elastic properties. As an example of using the rheological
equations of the structural model, we have approximated
the flow curves of some disperse systems.

STRUCTURED LIQUIDS

The structural rheological model describes shear flow
of structured systems under equilibrium flow conditions.
Such flow, the characteristics of which do not depend
on time, is called steady-state or stationary flow.
The structure of a system is the organization of particles
by means of physical or chemical bonds into a unified
whole. Concentrated suspensions, emulsions, micellar
solutions, polymer solutions and melts, liquid crystals
can be called structured liquids because they have some
structure and shear flow.
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In concentrated suspensions, particles combine into
aggregates during collisions. In the process of shear
flow, an individual aggregate moves for some time as
a whole, i.e. as an independent flow unit. Aggregates
are capable of disintegrating spontaneously, e.g. due to
thermal motion, or forced, e.g. due to hydrodynamic
breaking forces. Under certain conditions, particles
form aggregates during collisions in shear flow (shear
induced structure).

Aggregates and individual particles are elements of
the structure. If a unit volume contains N particles, we
denote the number of aggregated particles (included
in all aggregates) as N,, and the number of individual
particles as /NV|. In this way we can introduce an integral
characteristic of a structured system, assuming that with
increasing N, both the number of aggregates and their
sizes increase.

In polymer melts and solutions, the role of particles
is played by macromolecules, and the role of contacts
is played by entanglements between macromolecules
or direct interaction of chemical groups of neighboring
macromolecules.

EQUATIONS OF THE STRUCTURAL
RHEOLOGICAL MODEL

We can conditionally divide the full interval of shear
velocities y and the full interval of shear oscillation
frequencies o into four parts. In each separate interval
there is a special structural state to which a certain
flow regime corresponds. Measured rheological
quantities: shear stress t(y), first normal stress difference
Ni(y), loss modulus G"(®), accumulation modulus
G'(w).

Here we briefly review the existing flow regimes, which
are described in more detail in [9, 12—16]. Rheological
curves 1(y), N(7), G"(»), G'(®w) can be conditionally
divided into the following sections: low (I1I), high (1II),
very low (I), very high (IV) shear rates or oscillation
frequencies.

Based on hydrodynamic considerations, a generalized
flow equation [8, 9] was derived for the high shear rate
interval (III) in the form:
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The shear viscosity can be written in the following form
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;[he physical meaning of the coefficients 7, r‘c/ 2
nc/ is described in [8, 9], their values, in accordance
with the hydrodynamic approach of Casson, have the
following form:

Ay
2 12 1 _1
o T (1= k@ ’

21 A
T | 1T—kd

The coefficient y reflects the compactness or
friability of the aggregates and is zero if a continuous
mesh of particles is formed.

Taking into account the presence of square roots
in equation (2), let us write the equation for shear
viscosity, according to the kinetic approach of Cross:

-
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where the coeflicient ngz describes the viscosity of all
individual single particles, B is some positive constant
independent of the shear rate.

Using the kinetic approach, let us write down the
kinetic equation of formation and destruction of particle
aggregates:

dN ) IR B W
=N~k Ny = ki 2Ny +hs 2N (4)

Equation (4) contains the following coefficients:
k, — rate constant of aggregate formation at particle
collisions; k, — rate constant of spontaneous destruction
of aggregates, for example, as a result of thermal motion;
k; — rate constant of aggregate destruction under the
action of tensile hydrodynamic forces, k3 — rate constant
of formation of particle aggregates from single particles
under the action of shear. This kinetic equation does not
consider the interaction of aggregates of different sizes
with each other, nor does it introduce a specific form of
aggregate as a duplex as, for example, in [17]. The integral
characteristics of the system, namely the total number
of aggregated particles and the total number of particles
in a unit volume, are used to describe the process of
destruction/aggregate formation. A comparison of the
proposed kinetic equation with other similar equations
reviewed in [18] is given in Appendix 1.

At the interval of high shear rates (I1I), shear-induced
contact failure occurs, which leads to a decrease in the
number of aggregated particles N, under the condition
(ky >0, k3 =0). The equation of state under equilibrium
conditions dN, /dt = 0 takes the form:

N
L2 (5)
kl'Y + ko

Substituting (5) into (3) we obtain a rheological
equation similar to the generalized flow equation in the
form (2):

BNk, / k
2 = 172 2~/ 1~ +T]¥2- (6)
VTt ky /Ky
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Thus, the coefficients of the generalized flow
equatron (1) or (2) can be expressed through the rate
constants of the kinetic equation (4): T, 172 2 BNk2 / kl ,
Y = kO / k n1/2 T.l1/2

At 1nterva1 (IIT), the shear viscosity decreases
naturally with increasing shear rate, with the value
of the structural viscosity T 2/y or the value of the
aggregation coefficient Tt berng much larger than the
value of the coefficient n‘/ 2

[f shear results in strong contacts between particles
under the condition (k; >0, k3 >0), it is necessary to
use equations (3) and (4) containing all four positive
coefficients. Then one can obtain [9] an approximate
expression for shear viscosity under the condition

n"/? | n/2+ BN—3— ks —B~—~(k°ik21)2.
ks + ki (ks + k)7
Hence the rheological equation of the form
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whose coefficients are equal to:
ng’ =nl? +BN/§3 /(/€3~ + 151) ;
1} = BN (ky —ky) / (ks + y) .
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The coefficient 11/2 is positive if IEO >I€2, and

negative if k() <k2 Therefore, three types of rheological
behavior are possible in the interval (II). In the first
case, the viscosity increases with increasing shear rate
(shear solidification phenomenon). In the second case,
the viscosity decreases with increasing shear rate, w1th
the coefficient rl/ being less than or comparable in
magnitude to the coefficient ncv In the third case,
the coefficient r is close to zero under the eondition
ko ~ky, then the rheological behavior is similar to
“Newtonian” flow with an almost constant value of
shear viscosity 1, .

In the interval (IV) of very high shear rates,
a significant decrease in shear stress t is observed
compared to the values calculated from equatron (1)
The value of t decreases with increasing y or remains
constant over a large range of shear rates. This
phenomenon is referred to as flow “stall”; it is possibly
related to shear delamination of the sample or to a
change in the flow velocity profile. In the interval (I) of
very low shear rates, flow with constant shear viscosity
is observed, possibly because the shear magnitude is
not large enough to break existing particle aggregates
or to create new strong contacts. Thus, the structure of
the system remains constant. This “Newtonian” flow
regime is usually observed at low velocities.

Separation of flow curves into separate intervals
with different flow regimes can be done using root
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coordinates (t ) where rectilinear dependencies
are clearly vrsrble (r ). Each section has
a separate flow regime Wrth its own values of the
coeflicients of the rheological equation. Therefore, it is
impossible to describe the entire range of measurements
with one rheological equation.

Note that individual particles can be solids, droplets,
micelles, macromolecules. The role of aggregates
of particles can be played by groupings of micelles,
associations of macromolecules linked by entanglements.

The reasoning presented above can be applied to
explain the elastic properties of matter under equilibrium
shear flow. The elastic behavior at steady-state flow
is described by the first normal stress difference
N| =7 —Ty. Let us introduce an expression for
shear elasticity of the form ngr = N; /y. Let us write
the equation for shear elasticity in the form:

nIS/T2 =n, +BN2

)

If there are no aggregates, the shear elasticity is
provided only by the elasticity of individual particles,
i.e. it is related to the coefficient .

Let us assume that the number of particles forming
“elastic” aggregates is equal to N,. Let us write the
kinetic equation of destruction and formation of
“elastic” aggregates in the form similar to (4):

dN,
dt

The meaning of the rate constants remains the
same, but their magnitude changes. Similar previous
considerations lead to the rheological equation for the
interval (IIT) of high velocities:

= kyN — kgN, — k7> Ny + k3 72N, (10)

M= e, 2 A
YT AsT
where ys =ko / ki nst =B N ky /ky.

For the interval (II) of low shear rates, we obtain the
equation:
N/ *=ny "2 ~AN[7? (12)
where

ny = n..+BN

1/2 Y
0 kl s ANJ'? = BN (ky —ky) / (k3 + k).

The coefficient ANll/ 2 is positive if ko >k,, and
negative if ky <k,.

At the interval of very high shear rates, no anomalies
similar to “stall” were observed on the curves N, (y),

considered by us [16].

In the interval (I) of very low shear rates, a power-law
dependence of the following form is observed
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where n = 2. This kind of dependence does not follow
from the mechanism of formation/destruction of particle
aggregates. The structure of the system should probably
be considered unchanged over the interval (1), and the
elastic response should be attributed to the reaction of
the entire system of bound particles. It is important to
note that the boundaries of the flow regimes found for
the dependence t(y) and for the dependence N(y) in the
same structured fluid do not coincide completely.

We consider oscillating shear flow [9] as a type of
shear flow whose magnitude and direction change
according to a harmonic law. The amplitude of the
shear velocity (y, w) is some analog of the shear velocity

. Y=Kkpis ® , where kpg is the displacement factor.
The model describing the dynamic moduli G"(®») and
G'(w), is completely analogous to the model developed
for steady-state flow [9]. The rheological equation
describing viscous properties for the high frequency
interval (IIT) has the following form:

'(,01/2 .
17 1t Mw
o2+
/ +y
The aggregation coefficient g’ indicates the degree of
particle aggregation or the strength of macromolecule
entanglements, the compactness coefficient " indicates
the tendency to form loose aggregates of particles or
associates of macromolecules, the ultimate viscosity
coefficient noo/ describes the viscosity resulting from the
streamline of individual particles or macromolecules.
The Values of the coefficients present in equation (14)
are: y' =k /kis & =BN k5 /k{.
The rheological equation for the low frequency
interval (II) is as follows:

G2 - 172,172 (14)

G2 = g ol/? _AGM?, (15)

where g) = /2 + BNk} / (K} + ki);
AG™/? = BN (ki —k5) ] (ks + k).

The coefficient AG""/? is positive if k{ >k, and
negative if k, <k,. If k) ~k,, the rheological behavior

is similar to “Newtonian” with a nearly constant value
of dynamic viscosity n'.

Quite similarly, we obtain the equations describing
the elastic properties:

1/2

G2 %/;D +11Z<}/2 1/2 (16)
() +
where " =k{ /k{; §" =B N k% /k{ and
G'/? 286031/2 _ AG/I/Z’ (17)
where g5 = "1/2 +BNk /(K3 + Kk);

AG"? = BN(kO ~k3) / (k% + kD).

The coefficient AG'/? is positive if kq >k5, and
negative if kj <kj. The physical meaning of these rate
constants is the same as described earlier in the case of
steady-state flow.

At very low frequencies on the interval (I) there is a
power-law dependence
G2 - glp " n/2 (18)
where n = 2. It can be assumed that at this frequency
interval the structure of the system does not change
with increasing frequency. Then the frequency
dependence (18) is due to the response of the entire
elastic entanglement mesh to the action of oscillating
shear flow.

At the interval (IV), an anomalous decrease of the
dynamical moduli G" and G', is observed, and their
value can even decrease with increasing frequency. We
will call this phenomenon the “stall” of the oscillating
flow or the “stall” of the moduli G" and G'.

Examples of analyzing the frequency dependences
of the loss modulus G" and accumulation modulus G’
from the viewpoint of the structural model are given in
[13—15]. Here, some rheological curves obtained for
steady-state flow of structured fluids of different nature
will be shown and interpreted.

EXAMPLES OF STEADY-STATE
FLOW REGIMES. VISCOSITY—
STRUCTURE RELATIONSHIP

In [19], the viscosity curve of polymer aqueous
solution of polyethylene oxide (PEO) is given,
which has a section (II) of shear solidification at low
shear rates (y <0.1 s7!). The experimental data are
shown in Table 2 (Appendix 2); the viscosity curve
with approximation results is shown in Fig. 1. Shear
solidification at low velocities was attempted by the
authors [19] to be explained by a special intermolecular
interaction. However, the uncharged, flexible and
hydrophilic PEO chains are hardly capable of strong
intermolecular interaction, although the formation of
dimers is quite possible.

Plot (II) in Fig. 1 corresponds to the equilibrium
flow, during which the processes of entanglement
formation and destruction due to shear occur, but
the formation process prevails (k; >0, k3 >0, ky > k).
Plot (I1I) corresponds to equilibrium flow, in which
shear entanglement formation does not occur
(k; >0, k3 =0) and the process of entanglement
destruction predominates.

At plot (IV), there is an abnormal decrease in
viscosity, which gradually approaches the dependence
n~1/vy (dashed line in Fig. 1). Such rheological
behavior is called flow stall.

Fig. 2 shows the results of approximation by
equations (1) and (8) in root coordinate plots.

COLLOIDJOURNAL  Vol.87 No.1 2025
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According t0 the structural rheologlcal model [9],
the coefficient nc /2 s the root of the minimum limiting
viscosity, i.e., the viscosity of the non-aggregated
system. This Viscosity arises from the movement of
individual macromolecules in aqueous solution and is
quite small compared to the zero viscosity of a polymer
solution w1th entanglements which is described by the
coefficient n (0)

The coefficients of equation (8) are equal:

/2 _

N’ =’ + BNky /(s + ky), (19)
/2 = BN (ky —ky) / (ky + ky). (20)
It follows from equation (19) that n1/2 1/2; the

1/2
1/2

coefficient n“ can be comparable in magnitude to the

coefficient 1/ “(0). It follows from equation (20) that
the value of rl/ 2 can be negative, positive and close to
Zero dependmg on the relationship between the rate
constants k;, and k,. These conclusions are confirmed

by comparing the magnitudes of the coefficients in
Table 1.

In [20], the rheological behavior of aqueous micellar
solutions was considered. The cationic compound
cetyltrimethylammonium bromide (CTAB) was used
as a surface active agent, and the organic salt sodium
salicylate (NaSal) was used as an additive. In such systems,
cylindrical or worm-like micelles are formed. Shear
solidification in micellar solutions is attributed to the
formation of shear induced structure (SIS).

The experimental data are shown in Table 3
(Appendix 2), the viscosity curve with approximation
results is shown in Fig. 3.

The graph (Fig. 3) shows three sections of the viscosity
curve with three different flow regimes. At very low shear
rates, the Newtonian flow regime is observed (plot I).

(a)
15F
S 0
>P The beginning of the
flow stall
5 -
0 1 1 L
0 10 20 30
7! 2 12

[1V]

-3 -2
lgy, ¢!

Fig. 1. Dependence of viscosity on shear rate in double
logarithmic coordinates for aqueous solution of
polyethylene oxide with a mass concentration of 2.5 %.
Experimental data from [19].

Since the viscosity does not change, it can be assumed that
the structure of the system also remains constant. Since
the Newtonian viscosity n is less than the maximum
viscosity but greater than the minimum viscosity present
in the plot, it can be assumed that the constant structure
at very low velocities contains both individual micelles
and small micelle associations.

Fig. 4 shows the results of approximation by equations
(1) and (8) in root coordinate plots.

The coefficients of the rheological equations are presented
in Table 2. It can be seen that the value of n!/2 is much
smaller than nl/ 2(0) the value of nl/ 2(0) is comparable
to the value of nl/ 2 The value of 'cl/ 2 is positive, which
indicates the predominance of the process of formation
over the process of destruction of contacts between micelles.

Fig. 5 shows the viscosity curve for the emulsion of
Newtonian oil in aqueous solution given in the book

[7]. The experimental data are presented in Table 4
(Appendix 2). The oil is a mixture of: tritolyl phosphate

" (b)
e
Eq. 14 Q
L2
v_‘ctf
(=W
o’ y=11.624x — 0.288
- b R?=0.9964
TEq.8
0 1 1 1
0 0.1 0.2 0.3
yl/z, 12

Fig. 2. Dependence of shear stress on shear rate in root coordinates for aqueous solution of polyethylene oxide with a mass
concentration of 2.5%. a — on the full range of shear rates; b — on the range of low shear rates.
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(24 wt%) and dioctyl phthalate (76 wt%). The aqueous
solution has a viscosity of 0.00265 Pa‘s and contains
20 wt. % of anionic surfactant. The ratio of the viscosity
of the oil to the viscosity of the aqueous solution
is 24.7.

Fig. 6 shows the results of approximation by equations
(1) and (8) in root coordinate plots.

In Fig. 5. there are two flow regimes. Regime (1)
corresponds to equilibrium flow, during which the
processes of formation and destruction of contacts between
drops due to shear occur, but the destruction process
prevails (k; >0, k3 >0, ky <k, ). Therefore, the value
of tl{,z is less than zero. Plot (IIT) corresponds to the
equilibrium flow, in which no contacts are formed due
to shear, but only the destruction of contacts takes place
(k] >0, k5 =0).

The coefficients of the rheological equations are
presented in Table 2. The value of nlc/ 2 is much smaller
than n1/2(0); the value of nl/z(O) is comparable to
the value of n!/2. The value of t/? is negative, which
indicates the predominance of the process of destruction
over the process of formation of contacts between the
droplets.

The considered examples show that “experimental
windows” demonstrate different flow regimes in the
study of different structured fluids. Difficulties in data
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o
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Q ©o

2.0+

N/%O>l€2
1

2.5

-2.5
2.0

3.0
lgy, ¢!

Fig. 3. Dependence of viscosity on shear rate in double
logarithmic coordinates for CTAB/NaSal micellar
solution with surfactant concentration Cp(M) = 0.08.
Experimental data from [20].

interpretation can arise if the flow regimes are only
partially represented in the plots. Therefore, it is important
to perform measurements over as large an interval of shear
rates as possible, as well as to choose a measurement time
sufficient to reach the equilibrium flow state at each
measurement.

It should be added that there is another structural
approach to describe the viscosity of a structured fluid.
The rheological model [21] describes the dependence of
shear viscosity on the volume concentration n(®), with
each viscosity curve obtained for a constant shear rate [22].
In the model proposed by us, the coefficients (parameters)
of the rheological equation of the form n(y) depend on the
concentration of the dispersed phase. The generalized flow
equation is able to approximate the flow curves, which
were previously described by the Herschel—Bulkley or
Cross equations, for a variety of disperse systems, including
polymer composites [23].

CONCLUSION

This paper presents the equations of the structural
rheological model, which describe equilibrium steady-state
and equilibrium oscillatory flow from a unified point of
view. These equations are necessary and sufficient for
analyzing rheological curves 1(y), Ny(7), G"(®), G'(®).
The equations provide an alternative to equations using
the power law (Herschel—Bulkley, etc.) and equations
based on mechanical models (spring, damper, dry friction
element).

Four flow regimes are distinguished on the full
interval of shear rates (or oscillation frequency). In
the interval (I) the structure of the system is practically
constant, which corresponds to the “Newtonian”
behavior. In the interval (II) there is simultaneous
formation and destruction of contacts between
particles (entanglements between macromolecules),
which is described by a rheological equation with two
coefficients. If the formation process prevails, the shear
viscosity n increases; if the destruction process prevails,
the viscosity n decreases with increasing shear rate
7. The same applies to shear elasticity ngr (= Ny / 7),
dynamic viscosity " and dynamic elasticity n". In the
interval (III), only shear-induced contact failure

Table 1. Rheological characteristics of polymer solution, micellar solution, and emulsion: coefficients of rheological

equations 1 and 8 (SI system)

Structured fluid Tyz 1C/ 2 x n”z (0) niéz Tlcx/z2
Polyethylene oxide 5.29 0.364 0.362 14.98 11.62 0.288
solution
CTAB/NaSal 2.36 0.042 7.32 0.364 0.232 1.924
micellar solution
Oil emulsion in 5.35 0.306 0.676 8.211 2.30 ~1.04
aqueous solution

COLLOID JOURNAL Vol. 87 No. 1 2025
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Fig. 4. Dependence of shear stress on shear rate in root coordinates for CTAB/NaSal micellar solution with surfactant
concentration C,(M) = 0.08. a — at full shear rate interval; b — at low shear rate interval.
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[111]
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|
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Fig. 5. Dependence of viscosity on shear rate in double
logarithmic coordinates for aqueous oil emulsion with
volume concentration ¢ = 0.8.

Experimental data from [7].

(entanglement rupture) occurs, which is described by
a rheological equation with three coefficients. As the
shear rate (or frequency) increases, the rheological
quantities n, ngr, n’, n" decrease.

(a)

/2 pal2

0 1 1 1 1

0 4 8
y1/2’c—l/2

12 16

At interval (IV), there is an anomalous decrease in
rheological values 1, G and G', which is possibly due to
shear stratification and change in flow velocity profile.

Examples of the use of the equations at selected shear
rate intervals in describing the flow curves of some disperse
systems (polymer solution, micellar solution, emulsion)
are given.
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Casson rheological model [10]. The model considers
fluid systems possessing a limiting dynamic shear stress.
The plastic behavior of such systems is well described by

the equation V2 = Ti/ 24 Tl};/ 271/ 2 where the Casson

coefficients rl/ 2 and ni/ 2 correspond to the limiting

dynamic shear stress and viscosity coefficient at infinitely
large shear rate. Experimental points in the root
coordinates t'/% — 3'/1 in this case are located on the same
straight line, which is well confirmed by experimental data
for dye dispersions, blood and many structured fluids.

Casson derived this equation based on the
microrheological theory, in which aggregates-chains
of two or more particles arise under the action of some
cohesive forces F;. Since hydrodynamic calculations to
describe the cham breakage and energy dissipation during
chain flow proved to be too complicated, Casson replaced
chains with long model cylinders, assuming that their
hydrodynamic behavior in simple shear flow is identical
to that of rigid chains of particles. When flowing around
opposite parts of the cylinder, a hydrodynamic force
F, along the axis arises, which at a certain orientation
of the cylinder contributes to its rupture. The cylinder
breaks into two parts if the tensile hydrodynamic force F,
exceeds the cohesive force F,, which prevents the cylinder
from breaking. Long cylinders rupture in shear flow, and
short cylinders spontaneously unite upon collision into
longer cylinders. This replacement of chains by cylinders
made it possible to use Kuhn’s model to calculate the
hydrodynamic rupturing force and the magnitude of
energy dissipation.

Omitting Casson’s calculations given by us in published
monographs [8, 9], let us write down the expression for the
viscosity of the “diluted” suspension of model cylinders:

n="mng (1—(1))‘*'11067@((14‘(5/(110?)1/2),

where n, — is the viscosity of the d1spers1on (liquid)
medium, the coefficient @ = 0.7 assuming random initial
orientation of model cylinders. The parameter a can be
interpreted as an extremely low axial ratio at infinite shear
rate. The root of the shear rate appears in the equation.
The mean-field method (approximation of Brinkman and
Roscoe, 1952) was used to account for the hydrodynamic
interaction of the particles. As a result of the calculation,
the root of the viscosity value appears in the equation:

1/2_%c 172
1/2 +nC

n
As a result of modification of the Casson model,
we obtained a generalized flow equation

12
Y 1/2 172 :1/2

1/2 - +nd Y

T = /2 v , and the calculated values

VX
of coefficients slightly differ from those obtained in the
Casson model.
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Cross rheological model [11]. The processes of
destruction and recovery of aggregates during shear flow
can be described using kinetic equations. This approach
was used by Cross, who replaced the concentration of a
substance used in chemical kinetics by the number of
bonds between particles (L). Cross assumed that
a suspension consists of chains of particles with an
average number L of bonds between particles, introduced
a rate constant for bond formation (k,), a rate constant
for spontaneous bond breaking (ko) and a rate constant
for bond breaking due to shear flow (kly ).
The rate of change of the number of bonds between
particles is assumed to il—[; =kyN - (ko + klw'/“) L, where
N is the total number of initial particles in a unit volume,
L is the number of bonds between particles.

Cross used an empirical expression from polymer
theory: n =1, + BL, where n, is the viscosity of the
system at Y — oo, when all bonds are broken, B is some
coefficient. Omitting here Cross’s calculations, let us
write down the final equation of Cross in the form:

N—Me _ 1
n(o)_noo 1 +(l€1/k~0)'§/n
Commenting on the derivation of the Cross
equation, Hunter noted that there is no theoretical
justification for the choice of the constant as k;y".
The Cross equation is widely used to describe dispersed
and polymeric systems.

As a result of the modification of the Cross model,
we obtained an equation similar to the generalized flow
equation, where the coefficients are expressed through
the rate constants of fracture/aggregate formation,
the number of bonds is replaced by the number of
aggregated particles, and the viscosity root and shear
rate root are introduced by analogy with the Casson
model.

Coagulation and aggregation of particles. Let us
consider the relationship between the equations of the
structural model and the classical theory of coagulation.
Let us assume that there is no spontaneous detachment
of partlcles from aggregates (k, = 0) and no flow
(kly —0) Then the process of particle aggregation
formally occurs up to the formatlon of'a continuous mesh

l‘
dNZ = kyN; j dN, = j fyNdt'; N =ky Nty

(Ny=N):

i.e., the time of formation of a contmuous mesh is equal
tO tg = 1 / k2

In coagulation theory, the initial equation contains
some number of “conditional” particles v, which represent
both individual particles and aggregates of particles:
dv Vo
i kv?. The solution has the form: v(£)= Thvgl
The formation of a continuous mesh of particles is formally
equivalent to the formation of one large “particle” i.e.
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V—Ozl. Hence, the time of “complete” coagulation

1+ kVOtg

is formally equal to 7, :l(l - L)z l Thus, there is no
k Vo k

direct contradiction between the description of the
aggregation process (in the Cross equation) and the
description of the coagulation process, although both
kinetic equations actually no longer work when large
aggregates of particles appear.

Kinetic equations for aggregate
formation/destruction processes

We have proposed the expression

N e R B I
% = kyN — koNy — k"> Ny +k 7'/% N,

In [17], a kinetic equation is presented, which we
present here in the form necessary for comparison,
replacing the volume concentration by the number of N;
singlet or N, duplets in a unit volume and substituting
indices for the rate constants:

% = _k~2N]2 + ]g()Nz‘i‘ k~1'}.’N2 or
ANy = oy - o
d—tzzklez — koNy = Ky,

The difference is the lack of square root, the change of
the system to singlet and duplets, and the use of classical
coagulation theory for the particle aggregation process.

In [18], a kinetic equation for thixotropic dispersion
of the form dA / dt = —kyA7P + ks (1 = A7/ 2 +ko(1 - A),
where A is a structural parameter that describes the change
in internal structure with changing shear rate, is used. If we
write the structural parameter as the relative number of
aggregated particles (A = N 2/ N), we obtain an equation

ofthe formdN, / dt = kyN — kyN, — k;i®* N, +ks7"/* Ny,

The difference is that the rate constants k, =k, are
equated and the degree exponent B has an arbitrary
value. It is important to note that the terms of the
equations describing the formation of aggregates under
the action of shear completely coincide.
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Table 2. Dependence of viscosity on shear rate of aqueous solution of polyethylene oxide with mass concentration of

2.5%

lgy, ¢! —2.686 —2.425 —2.273 —2.116 —1.954 —1.724 —1.473
lgn, Pa:s 1.479 1.661 1.739 1.818 1.909 2.000 1.987
gy, c! —1.028 —0.824 —0.594 —0.343 —0.061 0.211 0.462
Ign, Pa-s 1.844 1.739 1.609 1.479 1.297 L.115 0.945
lgy, ¢! 0.755 1.001 1.283 1.582 1.822 2.042 2.293
lgn, Pa:s 0.698 0.548 0.333 0.151 —0.018 —0.188 —0.344
gy, c! 2.460 2.669 2.837 2.962 — — —
Ign, Pa-s —0.487 —0.643 —0.760 —0.865 — - —

Table 3. Dependence of viscosity on shear rate of CTAB/NaSal micellar solution with concentration of surface active
substance Cp, (M) = 0.08 at the ratio of Cp / Cn,sa = 4-21

lgy,c! 2.050 2.142 2.233 2.300 2.333 2.375
Ign, Pa-s —2.082 —2.078 —2.074 —2.047 —1.990 —1.941
gy, c! 2.417 2.463 2.517 2.617 2.733 2.892
Ign, Pa-s —1.897 —1.853 —1.826 —1.818 —1.849 —1.924
gy, c! 3.067 3.250 3.425 3.550 3.700 —
Ign, Pa-s —2.003 —2.091 —2.179 —2.215 —2.281 -

Table 4. Dependence of viscosity on shear rate of oil emulsion in aqueous solution with volume concentration ¢ = 0.8
and average droplet radius 7.7 um

lgy, ¢! —1.000 —0.795 —0.577 —0.385 —0.179 0.013

Ign, Pa-s 1.484 1.369 1.280 1.204 1.102 1.038

lgy, ¢! 0.218 0.410 0.615 0.808 1.026 1.218

Ign, Pa-s 0.975 0.847 0.720 0.579 0.439 0.312

gy, ¢! 1.410 1.628 1.833 2.038 2.230 2.436

Ign, Pa-s 0.166 0.045 —0.076 —0.197 —0.312 —0.427
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