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Abstract. A system of rheological equations is presented, obtained on the basis of structural-kinetic 
representations, which describes viscous and elastic properties of structured liquids, namely concentrated 
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approximation of shear viscosity curves for polymer solution, micellar solution and emulsion are given.
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INTRODUCTION

At present, there are no generally accepted views 
on the problem of non-Newtonian flow. Types of flow 
in suspensions, emulsions, micellar solutions, polymer 
solutions and melts are considered separately. Many local 
models and rheological equations have been proposed for 
each type of these structured systems [1–4].

Two main classes of rheological models can be 
distinguished, which consider f luid media either as 
homogeneous, homogeneous, or as heterogeneous, 
possessing some structure. In the first case, the methods 
of theoretical rheology based on continuum mechanics 
are used. Some physical justification of such rheological 
models is provided by mechanical models composed 
of springs, dampers, dry friction elements (Maxwell, 
Kelvin–Voigt, etc.).

In the second case, models describing aggregates of 
particles or associations of macromolecules that move in 
a viscous medium are used. The hydrodynamic approach 
is based on the laws of flow of particles and aggregates with 
viscous fluid and on the consideration of hydrodynamic forces 
that break the aggregates. The kinetic approach is based on 
kinetic equations describing the processes of formation and 
destruction of particle aggregates in shear flow.

The current state of the problem of non-Newtonian 
flow is described in various monographs, e.g., [5–7]. 

We have proposed a structural rheological model [8, 9] 
that allows us to describe the rheological behavior of 
various disperse and polymeric systems under steady-state 
and oscillatory flow.

The model is obtained by modifying and combining 
the well-known models of Casson [10] and Cross [11] 
(see Appendix 1).

In this paper, rheological equations derived from a 
unified structural approach will be fully summarized for 
both steady-state and oscillatory flow. These rheological 
equations are suitable for describing both viscous and 
elastic properties. As an example of using the rheological 
equations of the structural model, we have approximated 
the flow curves of some disperse systems.

STRUCTURED LIQUIDS

The structural rheological model describes shear flow 
of structured systems under equilibrium flow conditions. 
Such flow, the characteristics of which do not depend 
on time, is called steady-state or stationary f low. 
The structure of a system is the organization of particles 
by means of physical or chemical bonds into a unified 
whole. Concentrated suspensions, emulsions, micellar 
solutions, polymer solutions and melts, liquid crystals 
can be called structured liquids because they have some 
structure and shear flow.



38	 MATVEENKO, KIRSANOV 

COLLOID JOURNAL Vol. 87 No. 1 2025

In concentrated suspensions, particles combine into 
aggregates during collisions. In the process of shear 
flow, an individual aggregate moves for some time as 
a whole, i.e. as an independent flow unit. Aggregates 
are capable of disintegrating spontaneously, e.g. due to 
thermal motion, or forced, e.g. due to hydrodynamic 
breaking forces. Under certain conditions, particles 
form aggregates during collisions in shear flow (shear 
induced structure).

Aggregates and individual particles are elements of 
the structure. If a unit volume contains N  particles, we 
denote the number of aggregated particles (included 
in all aggregates) as N2, and the number of individual 
particles as N1. In this way we can introduce an integral 
characteristic of a structured system, assuming that with 
increasing N2 both the number of aggregates and their 
sizes increase.

In polymer melts and solutions, the role of particles 
is played by macromolecules, and the role of contacts 
is played by entanglements between macromolecules 
or direct interaction of chemical groups of neighboring 
macromolecules.

EQUATIONS OF THE STRUCTURAL 
RHEOLOGICAL MODEL

We can conditionally divide the full interval of shear 
velocities γ  and the full interval of shear oscillation 
frequencies ω into four parts. In each separate interval 
there is a special structural state to which a certain 
f low regime corresponds. Measured rheological 
quantities: shear stress � �( ) , first normal stress difference 
N1( )γ , loss modulus ��G ( )� , accumulation modulus  
�G ( )� .

Here we briefly review the existing flow regimes, which 
are described in more detail in [9, 12–16]. Rheological 
curves � �( ) , N1( )γ , ��G ( )� , �G ( )�  can be conditionally 
divided into the following sections: low (II), high (III), 
very low (I), very high (IV) shear rates or oscillation 
frequencies.

Based on hydrodynamic considerations, a generalized 
flow equation [8, 9] was derived for the high shear rate 
interval (III) in the form:
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The shear viscosity can be written in the following form
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The physical meaning of the coefficients χ, τс
1 2/ , 
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1 2/  is described in [8, 9], their values, in accordance 

with the hydrodynamic approach of Casson, have the 
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The coeff icient χ ref lects the compactness or 
friability of the aggregates and is zero if a continuous 
mesh of particles is formed. 

Taking into account the presence of square roots 
in equation (2), let us write the equation for shear 
viscosity, according to the kinetic approach of Cross: 

	 � �1 2 1 2
2� �� BN ,	 (3)

where the coefficient ��
1 2/  describes the viscosity of all 

individual single particles, B is some positive constant 
independent of the shear rate. 

Using the kinetic approach, let us write down the 
kinetic equation of formation and destruction of particle 
aggregates:

	 dN
dt
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Equation (4) contains the following coefficients: 
k2 – rate constant of aggregate formation at particle 
collisions; k0 – rate constant of spontaneous destruction 
of aggregates, for example, as a result of thermal motion; 
k1 – rate constant of aggregate destruction under the 
action of tensile hydrodynamic forces, k3 – rate constant 
of formation of particle aggregates from single particles 
under the action of shear. This kinetic equation does not 
consider the interaction of aggregates of different sizes 
with each other, nor does it introduce a specific form of 
aggregate as a duplex as, for example, in [17]. The integral 
characteristics of the system, namely the total number 
of aggregated particles and the total number of particles 
in a unit volume, are used to describe the process of 
destruction/aggregate formation. A comparison of the 
proposed kinetic equation with other similar equations 
reviewed in [18] is given in Appendix 1.

At the interval of high shear rates (III), shear-induced 
contact failure occurs, which leads to a decrease in the 
number of aggregated particles N2 under the condition 
(k1 0> , k3 0= ). The equation of state under equilibrium 
conditions dN dt

2 0=  takes the form:
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Substituting (5) into (3) we obtain a rheological 
equation similar to the generalized flow equation in the 
form (2):
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Thus, the coefficients of the generalized f low 
equation (1) or (2) can be expressed through the rate 
constants of the kinetic equation (4): �с

1 2
2 1

/ /� BNk k  , 
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At interval (III), the shear viscosity decreases 

naturally with increasing shear rate, with the value 
of the structural viscosity τ χс

1 2/ /  or the value of the 
aggregation coefficient τс

1 2/  being much larger than the 
value of the coefficient ηс

1 2/ . 
If shear results in strong contacts between particles 

under the condition (k1 0> , k3 0> ), it is necessary to 
use equations (3) and (4) containing all four positive 
coefficients. Then one can obtain [9] an approximate 
expression for shear viscosity under the condition 
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Hence the rheological equation of the form

	 τ η γ τ1 2 1 2 1 2 1 2/ / / /= −сv cv ,	 (8)
whose coefficients are equal to:

 η ηcv
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The coefficient τcv
1 2/  is positive if  k k0 2> , and 

negative if  k k0 2< . Therefore, three types of rheological 
behavior are possible in the interval (II). In the first 
case, the viscosity increases with increasing shear rate 
(shear solidification phenomenon). In the second case, 
the viscosity decreases with increasing shear rate, with 
the coefficient τcv

1 2/  being less than or comparable in 
magnitude to the coefficient ηсv

1 2/ . In the third case, 
the coefficient τcv

1 2/  is close to zero under the condition 
 k k0 2≈ , then the rheological behavior is similar to 
“Newtonian” flow with an almost constant value of 
shear viscosity ηсv .

In the interval (IV) of very high shear rates, 
a  significant decrease in shear stress τ is observed 
compared to the values calculated from equation (1). 
The value of τ decreases with increasing γ  or remains 
constant over a large range of shear rates. This 
phenomenon is referred to as flow “stall”; it is possibly 
related to shear delamination of the sample or to a 
change in the flow velocity profile. In the interval (I) of 
very low shear rates, flow with constant shear viscosity 
is observed, possibly because the shear magnitude is 
not large enough to break existing particle aggregates 
or to create new strong contacts. Thus, the structure of 
the system remains constant. This “Newtonian” flow 
regime is usually observed at low velocities. 

Separation of f low curves into separate intervals 
with different f low regimes can be done using root 

coordinates ( )/ /� �1 2 1 2�  , where rectilinear dependencies 
are clearly visible ( ~ )/ /� �1 2 1 2

 . Each section has 
a separate f low regime with its own values of the 
coefficients of the rheological equation. Therefore, it is 
impossible to describe the entire range of measurements 
with one rheological equation.

Note that individual particles can be solids, droplets, 
micelles, macromolecules. The role of aggregates 
of particles can be played by groupings of micelles, 
associations of macromolecules linked by entanglements.

The reasoning presented above can be applied to 
explain the elastic properties of matter under equilibrium 
shear flow. The elastic behavior at steady-state flow 
is described by the f irst normal stress difference 
N1 11 22= −τ τ . Let us introduce an expression for 
shear elasticity of the form � �ST � N1 /  . Let us write 
the equation for shear elasticity in the form:

	 ηST
1 2

2
/ = +∞n BN .	 (9)

If there are no aggregates, the shear elasticity is 
provided only by the elasticity of individual particles, 
i.e. it is related to the coefficient n∞.

Let us assume that the number of particles forming 
“elastic” aggregates is equal to N2. Let us write the 
kinetic equation of destruction and formation of 
“elastic” aggregates in the form similar to (4):
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The meaning of the rate constants remains the 
same, but their magnitude changes. Similar previous 
considerations lead to the rheological equation for the 
interval (III) of high velocities:
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where �ST �k k0 1/ ; n B N k kST = 

2 1/ .
For the interval (II) of low shear rates, we obtain the 

equation:
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The coefficient ∆N1
1 2/  is positive if k k0 2> , and 

negative if k k0 2< .
At the interval of very high shear rates, no anomalies 

similar to “stall” were observed on the curves N1 ( )γ , 
considered by us [16].

In the interval (I) of very low shear rates, a power-law 
dependence of the following form is observed 

	 N n1 00� �n, 	 (13)
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where n ≈ 2. This kind of dependence does not follow 
from the mechanism of formation/destruction of particle 
aggregates. The structure of the system should probably 
be considered unchanged over the interval (I), and the 
elastic response should be attributed to the reaction of 
the entire system of bound particles. It is important to 
note that the boundaries of the flow regimes found for 
the dependence � �( )  and for the dependence N1( )γ  in the 
same structured fluid do not coincide completely.

We consider oscillating shear flow [9] as a type of 
shear f low whose magnitude and direction change 
according to a harmonic law. The amplitude of the 
shear velocity ( )� �0  is some analog of the shear velocity 
γ: γ ω= kDIS , where kDIS  is the displacement factor. 
The model describing the dynamic moduli ��G ( )�  and 
�G ( )� , is completely analogous to the model developed 

for steady-state f low [9]. The rheological equation 
describing viscous properties for the high frequency 
interval (III) has the following form:

	 �� �
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� �
� ��G

g1 2
1 2

1 2
1 2 1 2/
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/
/ /�

� �
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The aggregation coefficient ′g  indicates the degree of 
particle aggregation or the strength of macromolecule 
entanglements, the compactness coefficient ��  indicates 
the tendency to form loose aggregates of particles or 
associates of macromolecules, the ultimate viscosity 
coefficient ���

1 2/  describes the viscosity resulting from the 
streamline of individual particles or macromolecules. 
The values of the coefficients present in equation (14) 
are: � � � �� k k0 1/ ; � � � �g B N k k

2 1/ .
The rheological equation for the low frequency 

interval (II) is as follows:
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The coefficient � ��G 1 2/  is positive if � � �k k0 2, and 
negative if k k0 2< . If  k k0 2≈ , the rheological behavior 
is similar to “Newtonian” with a nearly constant value 
of dynamic viscosity �� .

Quite similarly, we obtain the equations describing 
the elastic properties:
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where �� � �� ��� k k0 1/ ; �� � �� ��g B N k k

2 1/  and
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The coefficient � �G 1 2/  is positive if �� � ��k k0 2, and 
negative if �� � ��k k0 2. The physical meaning of these rate 
constants is the same as described earlier in the case of 
steady-state flow.

At very low frequencies on the interval (I) there is a 
power-law dependence 

	 � � ��G g1 2
00

2/ /�n ,	 (18)

where n ≈ 2. It can be assumed that at this frequency 
interval the structure of the system does not change 
with increasing frequency. Then the frequency 
dependence (18) is due to the response of the entire 
elastic entanglement mesh to the action of oscillating 
shear flow.

At the interval (IV), an anomalous decrease of the 
dynamical moduli ′′G  and ′G , is observed, and their 
value can even decrease with increasing frequency. We 
will call this phenomenon the “stall” of the oscillating 
flow or the “stall” of the moduli ′′G  and ′G .

Examples of analyzing the frequency dependences 
of the loss modulus ′′G  and accumulation modulus ′G  
from the viewpoint of the structural model are given in 
[13–15]. Here, some rheological curves obtained for 
steady-state flow of structured fluids of different nature 
will be shown and interpreted.

EXAMPLES OF STEADY-STATE 
FLOW REGIMES. VISCOSITY–
STRUCTURE RELATIONSHIP

In [19], the viscosity curve of polymer aqueous 
solution of polyethylene oxide (PEO) is given, 
which has a section (II) of shear solidification at low 
shear rates ( � �0 1.  s–1). The experimental data are 
shown in Table  2 (Appendix 2); the viscosity curve 
with approximation results is shown in Fig. 1. Shear 
solidification at low velocities was attempted by the 
authors [19] to be explained by a special intermolecular 
interaction. However, the uncharged, f lexible and 
hydrophilic PEO chains are hardly capable of strong 
intermolecular interaction, although the formation of 
dimers is quite possible.

Plot (II) in Fig. 1 corresponds to the equilibrium 
f low, during which the processes of entanglement 
formation and destruction due to shear occur, but 
the formation process prevails (k1 0> , k3 0> ,  k k0 2> ). 
Plot (III) corresponds to equilibrium flow, in which 
shear entanglement formation does not occur 
( k1 0> , k3 0= ) and the process of entanglement 
destruction predominates.

At plot (IV), there is an abnormal decrease in 
viscosity, which gradually approaches the dependence 
� �~ /1   (dashed line in Fig. 1). Such rheological 
behavior is called flow stall.

Fig.  2 shows the results of approximation by 
equations (1) and (8) in root coordinate plots.
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According to the structural rheological model [9], 
the coefficient ηс

1 2/ is the root of the minimum limiting 
viscosity, i.e., the viscosity of the non-aggregated 
system. This viscosity arises from the movement of 
individual macromolecules in aqueous solution and is 
quite small compared to the zero viscosity of a polymer 
solution with entanglements, which is described by the 
coefficient η1 2 0/ ( ).

The coefficients of equation (8) are equal:

	 � �cv
1 2 1 2

3 3 1
/ / /( )� � �� BNk k k   ,	 (19)

	 �cv
1 2

0 2 3 1
/ ( ) / ( )� � �BN k k k k     .	 (20)

It follows from equation (19) that ηcv
1 2/ >��

1 2/ ; the 
coefficient ηcv

1 2/ can be comparable in magnitude to the 
coefficient η1 2 0/ ( ). It follows from equation (20) that 
the value of τcv

1 2/  can be negative, positive and close to 
zero depending on the relationship between the rate 
constants k0 and k2. These conclusions are confirmed 
by comparing the magnitudes of the coefficients in 
Table 1.

In [20], the rheological behavior of aqueous micellar 
solutions was considered. The cationic compound 
cetyltrimethylammonium bromide (CTAB) was used 
as a surface active agent, and the organic salt sodium 
salicylate (NaSal) was used as an additive. In such systems, 
cylindrical or worm-like micelles are formed. Shear 
solidification in micellar solutions is attributed to the 
formation of shear induced structure (SIS).

The experimental data are shown in Table 3 
(Appendix 2), the viscosity curve with approximation 
results is shown in Fig. 3.

The graph (Fig. 3) shows three sections of the viscosity 
curve with three different flow regimes. At very low shear 
rates, the Newtonian flow regime is observed (plot I). 

Since the viscosity does not change, it can be assumed that 
the structure of the system also remains constant. Since 
the Newtonian viscosity ηN  is less than the maximum 
viscosity but greater than the minimum viscosity present 
in the plot, it can be assumed that the constant structure 
at very low velocities contains both individual micelles 
and small micelle associations. 

Fig. 4 shows the results of approximation by equations 
(1) and (8) in root coordinate plots.

The coefficients of the rheological equations are presented 
in Table 2. It can be seen that the value of ηс

1 2/  is much 
smaller than η1 2 0/ ( ); the value of η1 2 0/ ( ) is comparable 
to the value of ηсv

1 2/ . The value of τcv
1 2/  is positive, which 

indicates the predominance of the process of formation 
over the process of destruction of contacts between micelles.

Fig. 5 shows the viscosity curve for the emulsion of 
Newtonian oil in aqueous solution given in the book 
[7]. The experimental data are presented in Table 4 
(Appendix 2). The oil is a mixture of: tritolyl phosphate 

k3 = 0~
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Eq. 1
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Fig. 1. Dependence of viscosity on shear rate in double  
logarithmic coordinates for aqueous solution of 
polyethylene oxide with a mass concentration of 2.5 %. 
Experimental data from [19].
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Fig. 2. Dependence of shear stress on shear rate in root coordinates for aqueous solution of polyethylene oxide with a mass 
concentration of 2.5%. a – on the full range of shear rates; b – on the range of low shear rates.
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(24 wt%) and dioctyl phthalate (76 wt%). The aqueous 
solution has a viscosity of 0.00265 Pa·s and contains 
20 wt. % of anionic surfactant. The ratio of the viscosity 
of the oil to the viscosity of the aqueous solution  
is 24.7.

Fig. 6 shows the results of approximation by equations 
(1) and (8) in root coordinate plots.

In Fig. 5. there are two flow regimes. Regime (II) 
corresponds to equilibrium f low, during which the 
processes of formation and destruction of contacts between 
drops due to shear occur, but the destruction process 
prevails (k1 0> , k3 0> ,  k k0 2< ). Therefore, the value 
of τcv

1 2/  is less than zero. Plot (III) corresponds to the 
equilibrium flow, in which no contacts are formed due 
to shear, but only the destruction of contacts takes place 
(k1 0> , k3 0= ).

The coefficients of the rheological equations are 
presented in Table 2. The value of ηс

1 2/  is much smaller 
than η1 2 0/ ( ); the value of η1 2 0/ ( )  is comparable to 
the value of ηcv

1 2/ . The value of τcv
1 2/  is negative, which 

indicates the predominance of the process of destruction 
over the process of formation of contacts between the 
droplets.

The considered examples show that “experimental 
windows” demonstrate different f low regimes in the 
study of different structured fluids. Difficulties in data 

interpretation can arise if the f low regimes are only 
partially represented in the plots. Therefore, it is important 
to perform measurements over as large an interval of shear 
rates as possible, as well as to choose a measurement time 
sufficient to reach the equilibrium flow state at each 
measurement.

It should be added that there is another structural 
approach to describe the viscosity of a structured fluid. 
The rheological model [21] describes the dependence of 
shear viscosity on the volume concentration �( )� , with 
each viscosity curve obtained for a constant shear rate [22]. 
In the model proposed by us, the coefficients (parameters) 
of the rheological equation of the form � �( )  depend on the 
concentration of the dispersed phase. The generalized flow 
equation is able to approximate the flow curves, which 
were previously described by the Herschel–Bulkley or 
Cross equations, for a variety of disperse systems, including 
polymer composites [23].

CONCLUSION

This paper presents the equations of the structural 
rheological model, which describe equilibrium steady-state 
and equilibrium oscillatory flow from a unified point of 
view. These equations are necessary and sufficient for 
analyzing rheological curves � �( ) , N1( )γ , ��G ( )� , �G ( )� . 
The equations provide an alternative to equations using 
the power law (Herschel–Bulkley, etc.) and equations 
based on mechanical models (spring, damper, dry friction 
element).

Four f low regimes are distinguished on the full 
interval of shear rates (or oscillation frequency). In 
the interval (I) the structure of the system is practically 
constant, which corresponds to the “Newtonian” 
behavior. In the interval (II) there is simultaneous 
formation and destruction of contacts between 
particles (entanglements between macromolecules), 
which is described by a rheological equation with two 
coefficients. If the formation process prevails, the shear 
viscosity η increases; if the destruction process prevails, 
the viscosity η decreases with increasing shear rate 
γ . The same applies to shear elasticity � �ST ( / )� N1  , 
dynamic viscosity ��  and dynamic elasticity ��� . In the 
interval (III), only shear-induced contact failure 

Table 1. Rheological characteristics of polymer solution, micellar solution, and emulsion: coefficients of rheological 
equations 1 and 8 (SI system)

Structured fluid τc
1 2/ ηc

1 2/ χ �1 2 0/ � � ηcv
1 2/ τcv

1 2/

Polyethylene oxide 
solution 5.29 0.364 0.362 14.98 11.62 0.288

CTAB/NaSal  
micellar solution 2.36 0.042 7.32 0.364 0.232 1.924

Oil emulsion in 
aqueous solution 5.35 0.306 0.676 8.211 2.30 –1.04

Fig. 3. Dependence of viscosity on shear rate in double 
logarithmic coordinates for CTAB/NaSal micellar 
solution with surfactant concentration CD(M) = 0.08. 
Experimental data from [20].
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(entanglement rupture) occurs, which is described by 
a rheological equation with three coefficients. As the 
shear rate (or frequency) increases, the rheological 
quantities η, ηST , �� , ���  decrease.

At interval (IV), there is an anomalous decrease in 
rheological values τ, ′′G  and  ′G , which is possibly due to 
shear stratification and change in flow velocity profile.

Examples of the use of the equations at selected shear 
rate intervals in describing the flow curves of some disperse 
systems (polymer solution, micellar solution, emulsion) 
are given.
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Fig. 4. Dependence of shear stress on shear rate in root coordinates for CTAB/NaSal micellar solution with surfactant 
concentration CD(M) = 0.08. a – at full shear rate interval; b – at low shear rate interval.
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APPENDIX 1

Casson rheological model [10]. The model considers 
fluid systems possessing a limiting dynamic shear stress. 
The plastic behavior of such systems is well described by 
the equation τ τ η γ1 2 1 2 1 2 1 2= +с с 

, where the Casson 

coefficients τс
1 2/  and ηс

1 2/  correspond to the limiting 
dynamic shear stress and viscosity coefficient at infinitely 
large shear rate. Experimental points in the root 
coordinates � �1 2 1 2/ /�   in this case are located on the same 
straight line, which is well confirmed by experimental data 
for dye dispersions, blood and many structured fluids.

Casson derived this equation based on the 
microrheological theory, in which aggregates-chains 
of two or more particles arise under the action of some 
cohesive forces Fs. Since hydrodynamic calculations to 
describe the chain breakage and energy dissipation during 
chain flow proved to be too complicated, Casson replaced 
chains with long model cylinders, assuming that their 
hydrodynamic behavior in simple shear flow is identical 
to that of rigid chains of particles. When flowing around 
opposite parts of the cylinder, a hydrodynamic force 
Fн along the axis arises, which at a certain orientation 
of the cylinder contributes to its rupture. The cylinder 
breaks into two parts if the tensile hydrodynamic force Fн 
exceeds the cohesive force Fs, which prevents the cylinder 
from breaking. Long cylinders rupture in shear flow, and 
short cylinders spontaneously unite upon collision into 
longer cylinders. This replacement of chains by cylinders 
made it possible to use Kuhn’s model to calculate the 
hydrodynamic rupturing force and the magnitude of 
energy dissipation. 

Omitting Casson’s calculations given by us in published 
monographs [8, 9], let us write down the expression for the 
viscosity of the “diluted” suspension of model cylinders:

� � � � � � �� � � �� � � �� �0 0 0
1 21 � �a / /

 , 

where η0 – is the viscosity of the dispersion (liquid) 
medium, the coefficient а  ≈ 0.7 assuming random initial 
orientation of model cylinders. The parameter α can be 
interpreted as an extremely low axial ratio at infinite shear 
rate. The root of the shear rate appears in the equation. 
The mean-field method (approximation of Brinkman and 
Roscoe, 1952) was used to account for the hydrodynamic 
interaction of the particles. As a result of the calculation, 
the root of the viscosity value appears in the equation: 

η
τ
γ

η1 2
1 2

1 2/
/

/= +с
1/2

с


.

As a result of modification of the Casson model,  
we obtained a generalized flow equation 

τ
τ

γ χ
γ η γ1 2

1 2
1 2 1 2 1 2/

/
/ / /=

+
+с

1/2

с


  , and the calculated values  

of coefficients slightly differ from those obtained in the 
Casson model.

Cross rheological model [11]. The processes of 
destruction and recovery of aggregates during shear flow 
can be described using kinetic equations. This approach 
was used by Cross, who replaced the concentration of a 
substance used in chemical kinetics by the number of 
bonds between particles (L). Cross assumed that 
a  suspension consists of chains of particles with an 
average number L of bonds between particles, introduced 
a rate constant for bond formation (k2), a rate constant 
for spontaneous bond breaking (k0) and a rate constant 
for bond breaking due to shear f low ( � �k1γ

n ).  
The rate of change of the number of bonds between 

particles is assumed to dL
dt

k N k k L� � �� �� � � �2 0 1�
n , where 

N is the total number of initial particles in a unit volume, 
L is the number of bonds between particles.

Cross used an empirical expression from polymer 
theory: � �� �� BL , where �� is the viscosity of the 
system at � � �, when all bonds are broken, B is some 
coefficient. Omitting here Cross’s calculations, let us 
write down the final equation of Cross in the form: 
� �
� � �

�
�

�
� � �

�

�( )0
1

1 1 0
� � �k k n

.

Commenting on the derivation of the Cross 
equation, Hunter noted that there is no theoretical 
justification for the choice of the constant as � �k1γ

n . 
The Cross equation is widely used to describe dispersed 
and polymeric systems.

As a result of the modification of the Cross model, 
we obtained an equation similar to the generalized flow 
equation, where the coefficients are expressed through 
the rate constants of fracture/aggregate formation, 
the number of bonds is replaced by the number of 
aggregated particles, and the viscosity root and shear 
rate root are introduced by analogy with the Casson 
model.

Coagulation and aggregation of particles. Let us 
consider the relationship between the equations of the 
structural model and the classical theory of coagulation. 
Let us assume that there is no spontaneous detachment 
of particles from aggregates (k0  = 0) and no f low  
(� �k1

1 2γ / =0). Then the process of particle aggregation 
formally occurs up to the formation of a continuous mesh  

(N N2 = ): dN
dt

k N2
2=  ; dN k Ndt

N t

2

0

2

0
� �� 

g

; N k Nt= 2 g ; 

i.e., the time of formation of a continuous mesh is equal 
to t kg =1 2/  .

In coagulation theory, the initial equation contains 
some number of “conditional” particles ν, which represent 
both individual particles and aggregates of particles:

 d
dt

k
�

��� 2. The solution has the form:
 

v
v

v
( )t

k t
=

+
0

01
. 

The formation of a continuous mesh of particles is formally 
equivalent to the formation of one large “particle” i.e. 
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�
�
0

01
1

�
�

k tg
. Hence, the time of “complete” coagulation 

is formally equal to t
k kg � � �
1

1
1 1

0
( )

�
. Thus, there is no 

direct contradiction between the description of the 
aggregation process (in the Cross equation) and the 
description of the coagulation process, although both 
kinetic equations actually no longer work when large 
aggregates of particles appear.

Kinetic equations for aggregate 
formation/destruction processes

We have proposed the expression 
dN

dt
k N k N k N k N

� � � � � � � � � � �2
2 0 2 1

1 2
2 3

1 2
1� � � �� �/ / .

In [17], a kinetic equation is presented, which we 
present here in the form necessary for comparison, 
replacing the volume concentration by the number of N1 
singlet or N2 duplets in a unit volume and substituting 
indices for the rate constants:

dN
dt

k N k N k N
� � � � � � � �1

2 1
2

0 2 1 2� � � � �
 or

dN
dt

k N k N k N
� � � � � � � �2

2 1
2

0 2 1 2� � � � .

The difference is the lack of square root, the change of 
the system to singlet and duplets, and the use of classical 
coagulation theory for the particle aggregation process.

In [18], a kinetic equation for thixotropic dispersion 
of the form d dt k k k� � � �/ ( ) ( )/� � � � � �1 3

1 2
01 1 � �� ,  

where Λ is a structural parameter that describes the change 
in internal structure with changing shear rate, is used. If we 
write the structural parameter as the relative number of 
aggregated particles (� �  N N2 / ), we obtain an equation 
of the form dN dt k N k N k N k N� � � � � � �

2 0 0 2 1 2 3
1 2

1/ /� � � �� �� .
The difference is that the rate constants  k k0 2=  are 

equated and the degree exponent β has an arbitrary 
value. It is important to note that the terms of the 
equations describing the formation of aggregates under 
the action of shear completely coincide.



	 RHEOLOGY OF STRUCTURED LIQUIDS� 47

COLLOID JOURNAL Vol. 87 No. 1 2025

APPENDIX 2

Table 2. Dependence of viscosity on shear rate of aqueous solution of polyethylene oxide with mass concentration of 
2.5%

lg γ, с–1 –2.686 –2.425 –2.273 –2.116 –1.954 –1.724 –1.473

lgη, Pa.s 1.479 1.661 1.739 1.818 1.909 2.000 1.987

lg γ, с–1 –1.028 –0.824 –0.594 –0.343 –0.061 0.211 0.462

lgη, Pa.s 1.844 1.739 1.609 1.479 1.297 1.115 0.945

lg γ, с–1 0.755 1.001 1.283 1.582 1.822 2.042 2.293

lgη, Pa.s 0.698 0.548 0.333 0.151 –0.018 –0.188 –0.344

lg γ, с–1 2.460 2.669 2.837 2.962 – – –

lgη, Pa.s –0.487 –0.643 –0.760 –0.865 – – –

Table 3. Dependence of viscosity on shear rate of CTAB/NaSal micellar solution with concentration of surface active 
substance CD (M) = 0.08 at the ratio of C CD NaSal/ .= 4 21

lg γ, с–1 2.050 2.142 2.233 2.300 2.333 2.375

lgη, Pa.s –2.082 –2.078 –2.074 –2.047 –1.990 –1.941

lg γ, с–1 2.417 2.463 2.517 2.617 2.733 2.892

lgη, Pa.s –1.897 –1.853 –1.826 –1.818 –1.849 –1.924

lg γ, с–1 3.067 3.250 3.425 3.550 3.700 –

lgη, Pa.s –2.003 –2.091 –2.179 –2.215 –2.281 –

Table 4. Dependence of viscosity on shear rate of oil emulsion in aqueous solution with volume concentration ϕ = 0.8 
and average droplet radius 7.7 μm

lg γ, с–1 –1.000 –0.795 –0.577 –0.385 –0.179 0.013

lgη, Pa.s 1.484 1.369 1.280 1.204 1.102 1.038

lg γ, с–1 0.218 0.410 0.615 0.808 1.026 1.218

lgη, Pa.s 0.975 0.847 0.720 0.579 0.439 0.312

lg γ, с–1 1.410 1.628 1.833 2.038 2.230 2.436

lgη, Pa.s 0.166 0.045 –0.076 –0.197 –0.312 –0.427


