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Abstract. This paper presents the results of a numerical simulation of an electrolyte solution behavior near 
a spherical dielectric microparticle covered with a homogeneous ion-selective shell under the influence of 
an external electric field. The particle is assumed to be stationary, and the electrolyte either stays still or 
is pumped externally with a constant velocity in absence of the electric field. The field, in turn, generates 
electroosmotic flow near the particle’s surface. It is shown that concentration polarization can occur 
near the particle, whereas electrokinetic instability only occurs near particles with a sufficiently thick 
shell. When the particle’s surface charge is opposite to the one of its shell, non-stationary regimes may be 
observed when the shell is thin enough.

Keywords: electrophoresis, electroosmosis, composite particle, concentration polarization, instability, numerical 
simulation
DOI: 10.31857/S00232912250102e9

INTRODUCTION

The study of electroosmosis near solid particles is 
inextricably linked to the study of electrophoresis [1]. 
The forces generated by electroosmotic motion act on the 
particle immersed in the electrolyte. By the beginning of 
the 21st century, the study of the motion of microparticles 
and fluids in microscales – microfluidics – has gained 
special interest. In particular, electrophoresis finds 
application in labs-on-chip for solving problems of medical 
diagnostics and chemical analysis [2].

One of the main characteristics of electrophoresis is the 
dependence of the velocity developed by a microparticle 
on the properties of the electric field: this dependence 
turns out to be different for different types of particles. 
Smoluchowski [1] studied the motion of dielectric particles 
and established the linear character of the dependence of 
their velocity on the field strength. Later Dukhin showed 
[3] that the considered dependence is more complicated, 
and in theoretical works of Yariv’s group [4–6] a deviation 
from the linear dependence was predicted for strong fields 
and strongly charged particles. Experimental confirmation 
of this prediction was obtained by Tottori [7]. A review 
of modern concepts of dielectric particle electrophoresis 
can be found in Khair [8].

Electrophoresis of ion-selective particles in liquid 
electrolyte shows a much more complex behavior 
due to the presence of concentration polarization and 
electrokinetic processes of the second kind [9–14]. 
The electrophoresis rate maintains the linear dependence 
on the field strength as long as it is small [11], but as 
the strength increases, the dependence becomes more 
complicated [12], and in strong fields unsteady f low 
regimes with various types of instabilities arise [13, 14].

When studying the behavior of more complex 
particles, like biological ones, the assumption of particle 
homogeneity turns out to be inapplicable [15, 16]. One of 
the simplest ways to overcome this obstacle is to consider 
composite particles with a fixed internal structure. The 
model of “soft” particles [17, 18], having a homogeneous 
core impermeable to the electrolyte and a homogeneous 
shell permeable to salt ions, has been quite successful. 
At the same time, there is a noticeable lack of theoretical 
research in this direction, and the existing works usually 
use significant simplifications (in particular, linearization 
of motion equations). A semi-analytical approach based 
on the splicing of asymptotic expansions, actively used 
by Yariv’s group for both electrophoresis [6] and related 
electrokinetics problems [19], should be separately 
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emphasized. Nevertheless, the possibilities of analytical 
study of electrokinetics are approaching the limit, and 
further development requires the use of direct numerical 
simulation.

In the present work, we attempt to fill this gap and 
model the motion of a “soft” particle in a nonlinear 
statement with minimal simplifications. The results of 
numerical modeling can be used to predict the modes of 
motion arising in experiments and create a foundation 
for the development of labs-on-chip for manipulating 
complex biological particles.

PROBLEM STATEMENT 
AND SOLUTION METHODOLOGY

We consider a spherical microparticle consisting of 
a spherical electroneutral dielectric core of radius r0 and 
a homogeneous uniformly charged shell made of an ion-
selective layer of thickness L (Fig. 1). The core’s surface is 
assumed to carry a uniform surface charge density σ, and 
the volumetric charge density of the shell is N. The particle 
is stationary and is bathed by a solution of electroneutral 
symmetric binary electrolyte with ion concentrations C∞, 
which is pumped at an external velocity U∞. To simplify 
the mathematical formulation, the value of C∞ is assumed 
to be sufficiently small, the charge numbers of the salt 
ions are assumed to be ±1, and their diffusion coefficients 
are assumed to be equal. These simplifications are valid, 
for example, for KCl solutions with concentration up to 
hundreds of mol/m3, and allow us reducing the number 
of parameters of the problem. An external electric field 
of strength E∞ acts on the system. This formulation is 

similar to the one for electrophoresis [20], but  U∞ acts as 
an additional parameter.

If we neglect chemical reactions and dissociation 
of the solvent liquid, the behavior of dilute electrolyte 
ions can be described by the system of Nernst–Planck 
equations, which should be complemented by the Poisson 
equation describing the electric potential distribution and 
the Navier–Stokes equations for the velocity field. Due 
to the smallness of characteristic Reynolds numbers, 
the Navier–Stokes equations are taken in the Stokes 
approximation:
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It is convenient to solve equations (1)–(4) in 
a spherical coordinate system with the origin at the center 
of the particle. Since the system has axial symmetry along 
the electric field direction, it is solved in axisymmetric 
formulation, so the spatial variables are the radius r  
and azimuthal angle 0 � �� �. The unknowns are the 
molar ion concentrations C±, the electric potential Φ, 
the pressure Π and the velocity vector U. The symbol 
F  denotes the Faraday constant, R  is the universal gas 
constant, and  T  is the absolute temperature, which is 
assumed to be constant. The diffusion coefficient of 
electrolyte ions is denoted by D, the dynamic viscosity 
of the electrolyte is denoted by µ, its absolute dielectric 
constant is denoted by ε. The last two quantities are 
assumed to be constant, independent of the local ion 
concentration. The dielectric constant of the core is 
denoted by εp, and the dielectric constant of the shell, 
which is filled with electrolyte, is assumed to be ε. The 
ion diffusion coefficients in the shell are for simplicity 
assumed to be  D as well. The tilde in notations denotes 
dimensional quantities.

The following characteristic quantities have been 
chosen for making the system dimensionless: core radius r0, 
diffusion coefficient D (included in the characteristic time 


r D0
2  and characteristic velocity  D r0 ), thermal potential 


  �0 � RT F, concentration C∞, and viscosity µ. Note that 
the choice of the diffusion velocity as the characteristic 
velocity simultaneously allows taking zero pumping 
velocity and does not introduce constraints into the 
hydrodynamics. Two dimensionless parameters appear 
in dimensionless equations (1)–(4): the Debye number 
� ��  D r0 , where  

   � �D
2 2� �RT F C  is the square of the 

electric double layer thickness, and the coupling coefficient 
between the hydrodynamic and electrostatic parts of the 
problem � � ��  

�0
2 D . The equations eventually take 

the form

Fig. 1. Schematic representation of a composite micro
particle.
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Equations (5)–(8) in this form are not applicable in 
all spatial areas. For example, no electrolyte penetrates 
into the core, so at r < 1 C� � �U 0  and only equation 
(6) reduced to the Laplace equation remains of the 
whole system. For convenience in setting the boundary 
conditions, we denote the electric potential inside the 
core by φ:

� �2 0� . (9)

Inside the shell, 1 1< < +r L,  there is no electrolyte 
motion, U = 0, and equations (5)–(6) take the form

�
�

� �� � �� � � �
�

� �C
t

C C� 2 ; (10)

�2 2� � � �� �� C C N , (11)

where N N C� �
   is dimensionless volumetric charge 

density. This parameter determines the ability of the 
shell to attract ions of the same sign and repel ions of the 
opposite sign: at N � ��  the shell is perfectly cation-
selective, at N � ��  – perfectly anion-selective. More 
details about its influence are given in [21] on the example 
of a flat membrane.

The considered formulation contains several boundaries, 
on each of which different conditions are imposed. All 
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Fig. 2. Distributions of charge density � � �� �C C  and salt concentration K C C� �� � outside the particle at E� � 10, 
U� � 0 and � � 0. (a) L = 0 1. , (b) L = 0 5. , (c) L = 1 0. . The distributions inside the shell are not shown.
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unknown functions are assumed to be continuous in 
the whole domain. At the boundaries � � 0  and � �� , 
symmetry conditions are set for C±, Φ and normal velocity 
components U r, and antisymmetry condition for the 
tangential component U� � 0. At r = 0, the zero level of 
potential, � � 0, is assumed and the condition of absence of 
singularity is imposed. At the boundary of the core, r = 1,  
one should expect a jump of the field strength by the value 
δ ε ε=  p  and the absence of ion flux:

r = 1 : Φ = φ ; ν δν φ σ∂
∂

= ∂
∂

−Φ
r r ; 
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+ ∂
∂
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±

C
r

C
r
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(12)

On the boundary of the shell, r L� �1 , simple no-
slip and no-flux conditions, U = 0 , which ensure the 
continuity of the velocity field, are assumed. They can be 
considered as a special case of liquid slip conditions near 
a hydrophobic surface [22]. At a distance from the particle, 
the ion concentrations tend to the equilibrium value, the 
field strength tends to the one of the external field, and the 
velocity tends to the one of the incoming flow:

r � �: C� � 1; � � � �E r cos�; 

U Ur � � cos�; U U� �� � sin .
(13)

Finally, the electrolyte is assumed to be undisturbed 
at the initial time instant:

t = 0: C� � 1. (14)

This condition does not take into account the 
redistribution of ions due to the charge present in the 
particle, but calculations show that such redistribution 
occurs very quickly (within a few time steps) and does 
not affect the further behavior of the system.

To solve the system (5)–(14), we use a modification 
of the finite-difference method of the second-order 
approximation in space and the third-order approximation 
in time, previously used to solve the electrophoresis problem 
[20]. At each time step, the stationary equations (6)–(9) are 
transformed into systems of ordinary differential equations 
using the eigenfunction expansion of the differential 
operators with respect to the angle. The system for (9) is 
solved analytically and substituted into boundary conditions 
(12), the other equations are written in difference form 
and reduced to systems of linear algebraic equations 
with 3- and 5-diagonal matrices, which are solved by the 
tridiagonal matrix algorithm and its extension to 5-diagonal 
matrices. The found potential and velocity distributions are 
substituted into equations (5), which are integrated by the 
semi-implicit Runge–Kutta method [23].

In the calculations presented below, the following 
parameter values have been fixed: ν = −10 3,  � � 0 2. , 

N � �10 (cation-selective shell with good selectivity), 
� � 0 05. . The external electric field strength E∞, the 
surface charge density of the core σ and the velocity of the 
incoming electrolyte U∞ were varied, remaining constant 
within each of the calculations, with the direction of E∞ 
and U∞ following the scheme in Fig. 1.

RESULTS AND DISCUSSION

When comparing electrophoresis of dielectric and 
ion-selective particles, the main difference is the presence 
of electric current through the particle surface. For the 
problem under consideration, it also seems logical to 
estimate the current through the shell boundary:
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Fig. 3. Distributions of (a) current through the surface 
j� � ��  and (b) electric potential Φ along the symmetry 
axis x r� cos� at E� � 5, � � 0 and L = 1 0. . Curves 
1 – U� � 0, curves 2 – U� � 50.
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According to the scheme in Fig. 1, cations enter the 
shell from the left, � �� 2, and exit from the right, � �� 2.  
In stationary modes, the total charge of the shell remains 

unchanged, so the condition j d+ ( ) =∫ θ θ θ
π

sin .
0

0 is 
satisfied. In the general case this condition can be violated 
(in particular, at t = 0).

Ion-selective surfaces are characterized by 
concentration polarization – redistribution of electrolyte 
ions near such a surface due to the influence of an external 
field with desalination and formation of a space charge 
area on the anode side, as well as with salt accumulation 
on the cathode side [11]. In sufficiently strong fields, 
the salt concentration can significantly exceed the 
equilibrium one [13]. Fig. 2 shows the charge and total 
ion concentration distributions in a still electrolyte near 

particles with different shell thicknesses. As it can be seen, 
concentration polarization takes place even near a thin 
shell.

Fig. 3 shows characteristic distributions of the current 
through the shell boundary and the electric potential 
along the symmetry axis. In the graph (b) one can note 
a significant voltage drop in the space charge region, 
denoted by ∆VSCR, which in combination with the current 
through the particle generates electrokinetic instability. 
The electroconvection caused by the instability is clearly 
visible in plot (c) in Fig. 2c.

While the velocity value U∞  is usually used to 
estimate the electrophoresis intensity, it is convenient to 
estimate the electroosmosis intensity near a stationary 
particle by the integral current. In the present work, the  
value
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Fig. 4. (a), (c) – dependence of voltage drop in the space charge region ∆VSCR  on the external field strength E∞;  
(b), (d) – dependence of integral current jabs on ∆VSCR . Graphs (a) and (b) are plotted without advection, U� � 0 , 
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is introduced for this purpose.
By plotting the values ∆VSCR  and  jabs, realized in 

different modes, it is possible to construct the current-
voltage characteristics of the microparticle. Examples of 
such characteristics are shown in Fig. 4. The dependence 
of ∆VSCR on E∞, as shown in graphs (a) and (c), is almost 
linear. Graphs (b) and (d) demonstrate behavior similar 
to electromembrane systems: at low voltage drops, the 
underlimiting regime is realized (proportionally in 
proportion to voltage), at moderate voltage drops, the 
limiting mode is realized (current growth slows down 
sharply). When the shell thickness is large enough, even the 
overlimiting regime is realized: when the critical value of 
∆VSCR

*  is exceeded, electroconvection occurs, intensifying 
the current. The observed value ∆VSCR

*  corresponds to the 
theoretical predictions of [24].

In Fig. 4, there is a noticeable increase in the current 
through the particle with increasing thickness of its shell. 
This is largely due to the increase in the surface area of the 
particle. At the same time, with increasing shell thickness, 
the voltage drop in the space charge region also increases, 
so a stronger field is required for electroconvection to 
occur near particles with thin shells. Advection does 
not qualitatively affect the behavior of the system: the 
voltage drop slightly decreases, the current increases. The 
current increase is due to the convective inflow of charge 
carriers into the desalination zone. The flow structure 
did not undergo qualitative changes even at U∞ = 1 000, . 
The slip of the liquid near the shell was not considered 
in the present work, but its contribution can be expected 
to be quantitative as well, expressing itself mainly in the 
shift of the threshold of instability onset to the left [25].

The influence of the charge of the core surface on the 
effects described above was so insignificant that it is not 
shown in the diagrams. Any significant effect is observed 
only in the case when the shell thickness is small and its 
charge is opposite in sign to the charge of the core surface. 
This case is studied by the authors in a separate paper, the 
preprint of which is available on request [26].

Finally, we note that when the absolute value of 
the shell charge decreases, its selectivity decreases and 
conductivity increases, which leads to a decrease in ∆VSCR.  
As a consequence, a stronger field must be applied for 
a noticeable concentration polarization to occur, and the 
critical value of ∆VSCR

*  shifts to the right. Nevertheless, 
the shell thickness even in this case determines whether 
electroconvection will occur at all. Here it is necessary to 
emphasize the difference of the considered formulation 
from the electromembrane system with a non-ideal 
membrane [21]: if in the latter the membrane conductivity 
plays a determining role in the conductivity of the whole 
system, in the considered formulation the ion flux can 
bypass the particle, so the conductivity of the system is 
determined by the conductivity of the electrolyte.

CONCLUSION

The paper presents the results of numerical simulation 
of electrokinetics in electrolyte near a spherical dielectric 
microparticle covered with an ion-selective shell. It is 
shown that concentration polarization occurs near the 
shell, regardless of its thickness, but electroconvection 
can occur only at a sufficiently large thickness of the 
shell. The electrolyte pumping and the charge on the 
dielectric surface have no qualitative effect on the 
dynamics of the system. The results of this work can 
be used to develop methods for controlling composite 
microparticles, including biological ones, and to develop 
methods for investigating the structure of such particles 
in microdevices.
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