— — ПЛАЗМОХИМИЯ —

УЛК 544.556.1

ВЛИЯНИЕ НАПРЯЖЕНИЯ И ДЛИТЕЛЬНОСТИ ПЛАЗМОХИМИЧЕСКОГО ПИРОЛИЗА 1,1,2,2-ТЕТРАХЛОРЭТАНА ПОД ДЕЙСТВИЕМ НИЗКОВОЛЬТНЫХ РАЗРЯДОВ В ЖИДКОЙ ФАЗЕ

© 2024 г. И. В. Бодриков^а, Е. Ю. Титов^а, А. И. Серов^{а,*}, Д. Ю. Титов^а, Ю. А. Курский^а, Е. Г. Ивашкин^а

^аНижегородский государственный технический университет им. Р.Е. Алексеева 603950, Нижний Новгород, ул. Минина, 24

*E-mail: anton.serov710@gmail.com

Поступила в редакцию 12.04.2023 г. После доработки 15.05.2023 г. Принята к публикации 17.05.2023 г.

Плазмохимический пиролиз 1,1,2,2-тетрахлорэтана проводился в жидкой фазе при напряжении источника постоянного тока 100-300 В и времени процесса 1-5 ч. Увеличение напряжения постоянного тока с 100 до 300 В приводит к росту конверсии 1,1,2,2-тетрахлорэтана с 21.6 до 71.7 мас. % за 1 ч с ростом энергозатрат на трансформацию 1,1,2,2-тетрахлорэтана с 0.20 до 0.28 (кВт ч)/моль. При увеличении времени процесса с 1 до 5 ч возрастает конверсия 1,1,2,2-тетрахлорэтана с 21.6 до 68.9 мас. % и энергозатраты с 0.20 до 0.33 (кВт ч)/моль. Рост конверсии тетрахлорэтана независимо от условий проведения пиролиза приводит к снижению выхода тетрахлорэтилена и трихлорэтилена в 2-3 раза за счет превращения их в перхлорированные углеводороды.

Ключевые слова: 1,1,2,2-тетрахлорэтан, низковольтные разряды, нетермическая плазма

DOI: 10.31857/S0023119324020095 **EDN:** VRQVTQ

ВВЕДЕНИЕ

Хлорсодержащие углеводороды по объему производства занимают лидирующее место среди гетероатомных соединений [1]. Основным промышленным методом получения непредельных хлорированных углеводородов является пиролиз хлоралканов [2, 3]. Термические методы производства хлоралкенов требуют жестких условий (температура 390— 600°С, давление 10—30 атм), связаны с образованием большого объема побочных продуктов и высокими требованиями к материалам оборудования и производственной безопасности [4].

Термический пиролиз 1,2-дихлорэтана (ДХЭ) является основной стадией для получения винилхлорида. Процесс производства винилхлорида имеет несколько вариантов реализации: прямое хлорирование этилена до ДХЭ или каталитическое окислительное хлорирование этилена до ДХЭ с дальнейшим пиролизом ДХЭ при температуре 480—520°С и давлении 15—30 атм с конверсией 50—53%. Основными побочными продуктами пиролиза ДХЭ являются 1,1,2-трихлорэтан, три- и тетрахлорметан и другие хлорированные продукты [3].

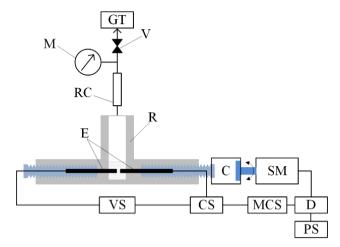
Совместное получение тетрахлорэтилена и трихлорэтилена возможно каталитическим оксихлори-

рованием 1,1,2,2-тетрахлорэтана (ТХЭ) [4, 5]. Процесс проводится при температуре 390—450°С и давлении 1—3 атм. В результате получается смесь тетрахлорэтилена и трихлорэтилена с общей селективностью 80%. В качестве побочных продуктов оксихлорирования образуются гексахлорэтан, гексахлорбутадиен и гексахлорбензол [4].

В настоящее время активно развиваются методы превращения хлорированных углеводородов под действием плазмы [6—9]. Плазмохимические методы принципиально отличаются от термических методов условиями протекания процессов, составом получаемых продуктов и аппаратурным оформлением. В нетермической плазме, в отличии от термических процессов, химические превращения происходят в основном не за счет Джоулева нагрева, а за счет электронного возбуждения молекул [6].

Возбуждение кислорода воздуха при действии нетермической плазмы приводит к повышению его окислительной способности, что способствует полному окислению хлорированных углеводородов в воздушной среде [10—12]. Наибольшая степень окисления трихлорэтилена до ${\rm CO}$, ${\rm CO}_2$, под действием поверхностного разряда, наблюдается при

напряжении 30—40 кВ. В качестве продуктов неполного окисления трихлорэтилена образуются фосген и трихлорацетальдегид [10]. Окисление ДХЭ в радиочастотной плазме тлеющего разряда при контакте с кислородом воздуха приводит к образованию ${\rm CO}$ и ${\rm CO}_2$, а также в небольших количествах трихлорэтилена и тетрахлорэтилена [13].


Окисление воздухом смеси хлорированных этиленов в реакторе с импульсным коронным разрядом исследовано в работах [14—17]. Действие коронных разрядов на дихлорэтилен и трихлорэтилен приводит к образованию СО, СО₂ и HCl. Степень превращения дихлорэтилена при напряжении 70—75 кВ и температуре в реакторе 120°С составляет 70—80% [14]. Окисление трихлорэтилена под действием плазмы при напряжении переменного тока 8 кВ приводит к образованию оксидов углерода, HCl, дихлорметана, хлороформа и пентахлорэтана [16].

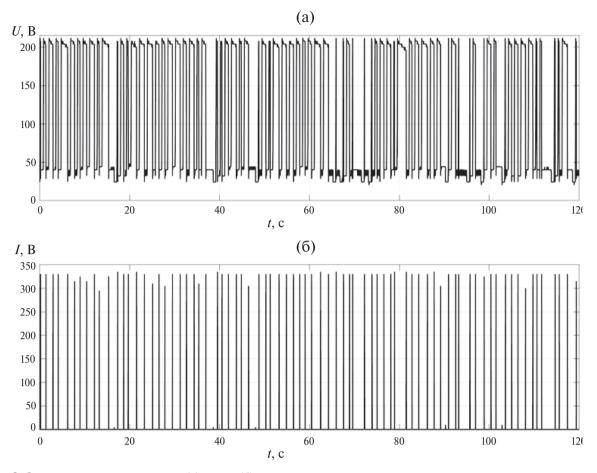
Результаты окислительного разложения хлорированных углеводородов с использованием нетермической плазмы диэлектрического барьерного разряда представлены в исследованиях [18—21]. Процесс окислительного разложения ДХЭ [18] и трихлорэтилена [20] проводится при напряжении 10—25 кВ с образованием оксидов углерода, НС1 и фосгена. В отсутствии кислорода в плазме диэлектрического барьерного разряда трансформация ДХЭ (конверсия 87.9%) при напряжении 16 кВ приводит к образованию винилхлорида с выходом 16.8% [22].

В настоящее время разрабатываются низкотемпературные методы стимулирования химических реакций действием нетермической плазмы, генерируемой низковольтными разрядами в жидкой фазе [23—25]. Плазмохимический пиролиз в жидкой фазе проводится при температуре от 25 до 100°С и атмосферном давлении [26—28].

В работе [23] приведены результаты дегидрохлорирования 1,2-дихлорэтана, 1,1,2-трихлорэтана и 1,1,2,2-тетрахлорэтана под действием низковольтных разрядов в жидкой фазе. Процесс проводится при напряжении 60 В и емкости конденсатора 20090 мкФ. Основными продуктами дегидрохлорирования ТХЭ являются тетрахлорэтилен (30.9 мас. %), трихлорэтилен (28.2 мас. %), а также твердофазные продукты (15.3 мас. %).

В развитие низкотемпературного плазмохимического метода трансформации хлорпроизводных углеводородов в настоящей работе исследуется влияние напряжения и длительности процесса на степень конверсии ТХЭ и состав продуктов трансформации. Полученные результаты позволят опре-

Рис. 1. Схема экспериментальной установки: R — реактор; RC— обратный холодильник; E — электроды; M — манометр; V — клапан; GT — газовая ловушка; C — муфта; SM — шаговый двигатель; D — драйвер шагового двигателя; PS — блок питания шагового двигателя; CS — датчик тока; CS — микропроцессорная система управления; CS — источник напряжения.


делить влияние исследуемых условий процесса на направления трансформации ТХЭ.

ЭКСПЕРИМЕНТ

Для проведения плазмохимического пиролиза использовался коммерческий 1,1,2,2-тетрахлорэтан (98.0%, SigmaAldrich). Лабораторная установка с плазмореактором (тефлон, объемом 40 см³) представлена на рис. 1. В реакторе установлены графитовые электроды. Реактор снабжен обратным холодильником с температурой –15°С. Образующиеся газообразные продукты улавливались в ловушке. Температура в реакторе в ходе эксперимента не превышала 50°С.

Для генерации импульсных разрядов использовался источник постоянного тока. Эксперимент проводился при напряжении 100—300 В и длительности процесса 1—5 ч. Генерация импульсных разрядов производилась автоматическим изменением расстояния между электродами. Продолжительность и мощность электрических разрядов контролировалась с помощью блока управления [24]. Значения напряжения и тока измерялись осциллографом Rigol DS1054Z с дальнейшей обработкой экспериментальных характеристик по методике [25]. Типичная осциллограмма тока и напряжения электрических разрядов при напряжении источника постоянного тока 100 В приведена на рис. 2.

В табл. 1 приведены характеристики электрических разрядов в процессе пиролиза ТХЭ при напряжении источника постоянного тока 100—300 В.

Рис. 2. Осциллограммы напряжения (a) и тока (б) электрических разрядов при напряжении источника постоянного тока 100 B.

Таблица 1. Характеристики электрических разрядов при напряжения постоянного тока 100—300 В

Характеристики электрических разрядов	Напряжение, В			
	100	200	300	
Средняя продолжительность импульса, мс	0.90	0.95	0.87	
Средняя частота импульсов, Гц	0.64	0.70	0.78	
Среднее значении амплитуды импульсов, А	92.85	296.55	271.06	
Средняя энергия импульса, Дж	0.026	0.162	0.206	

Анализ состава продуктов в жидкой фазе проводился методом ГХ/МС на масс-спектрометре с ионной ловушкой Polaris Q (Thermo Electron, США), соединенном с газовым хроматографом Trace GC Ultra (Thermo Electron, США). Разделение компонентов реакционных смесей проводилось на капиллярной колонке TR-35MS $60 \times 0.32 \times 0.25$ мкм. Температура ионного источника составляла 230° С, энергия ионизирующих электронов — 70 эВ. Положительные ионы регистрировались в диапазоне массовых чисел 30-500. Для интерпретации массспектров продуктов использовалась база данных NIST.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследование влияния напряжения на состав продуктов пиролиза ТХЭ проводилось при напряжении 100—300 В и времени 1 ч (табл. 2). Полученные результаты показывают, что увеличение напряжения на источнике постоянного тока приводит к росту средней энергии импульса электрических разрядов с 0.026 до 0.206 Дж и конверсии ТХЭ с 21.6 до 71.7 мас. %. С увеличением степени конверсии ТХЭ снижается выход трихлорэтилена с 34.2 до 13.2 мас. %, тетрахлорэтилена с 7.2 до 2.9 мас. % и гексахлорфульвена с 28.9 до 12.2 мас. %.

В табл. 3 приведены результаты по влиянию длительности пиролиза ТХЭ на степень конверсии и

Таблица 2. Характеристики процесса пиролиза ТХЭ при напряжении 100-300 В

Напряжение, В	100	200	300
Средняя энергия импульса, Дж	0.026	0.162	0.206
Конверсия, мас. %	21.6	59.8	71.7
Энергозатраты, (кВт ч)/моль	0.20	0.20	0.28
Выход НСІ, мас. %	24.9	28.6	34.5
Выход твердой фазы, мас. %	3.0	3.6	4.4
Суммарный выход хлорорганических	72.1	(7.0	(1.1
продуктов, мас. %	72.1	67.8	61.1
дихлорацетилен		0.9	0.9
трихлорэтилен	34.2	16.2	13.2
тетрахлорэтилен	7.2	3.6	2.9
пентахлорэтан	5.1	4.7	2.4
гексахлорэтан		3.2	2.6
пентахлорбутадиен		1.8	1.2
гексахлорбутадиен	2.4	13.2	16.2
гексахлорпропилен			1.1
1,2-дихлор-3,4-бис(дихлорметилен)циклобутан		1.9	1.9
пентахлорбензол		1.5	1.6
гексахлорфульвен	18.9	16.1	12.2
октахлорстирол	4.3	4.7	4.9

Таблица 3. Влияние времени пиролиза на конверсию и состав продуктов трансформации ТХЭ

Напряжение, В	100				
Время эксперимента, ч	1	2	3	4	5
Конверсия, мас. %	21.6	38.2	51.2	60.4	68.9
Энергозатраты, (кВт ч)/моль	0.20	0.22	0.22	0.31	0.33
Выход НСІ, мас. %	24.9	25.4	28.7	31.1	33.6
Выход твердой фазы, мас. %	3.0	3.3	3.6	3.8	4.1
Суммарный выход хлорорганических продуктов, мас. % Хлорорганические продукты, мас. %	72.1	71.3	67.7	65.1	62.3
дихлорацетилен				1.6	1.7
трихлорэтилен	34.2	28.1	19.6	17.7	14.6
тетрахлорэтилен	7.2	5.8	4.5	3.9	2.7
пентахлорэтан	5.1	2.8	5.4	4.8	3.2
гексахлорэтан			3.9	4.2	2.5
пентахлорбутадиен					1.2
гексахлорбутадиен	2.4	11.7	13.8	14.6	15.5
1,2-дихлор-3,4-бис(дихлорметилен)циклобутан					4.4
пентахлорбензол					1.3
гексахлорфульвен	18.9	18.0	15.4	13.2	10.6
октахлорстирол	4.3	4.9	5.1	5.1	4.6

состав продуктов при напряжении источника постоянного тока 100 В. Увеличение времени процесса с 1 до 5 ч приводит к увеличению конверсии ТХЭ с 21.6 до 68.9 мас. %, выхода НС1 с 24.9 до 33.6 мас. % и твердофазных продуктов с 3.0 до 4.1 мас. %.

Максимальный выход трихлорэтилена, тетрахлорэтилена и гексахлорфульвена в продуктах трансформации ТХЭ наблюдается при времени процесса 1 ч. Увеличение длительности процесса пиролиза приводит к снижению выхода трихлорэтилена с 34.2

до 14.6 мас. %, тетрахлорэтилена с 7.2 до 2.7 мас. %, гексахлорфульвена с 18.9 до 10.6 мас. % и увеличению выхода гексахлорбутадиена с 2.4 до 15.5 мас. %.

Для проведения квантово-химического моделирования действие нетермической плазмы можно представить как переход молекулы ТХЭ в возбужденное состояние с энергией активации 262.5 кДж/моль. Такое возбуждение сопровождается сменой электронной конфигурации с синглета на триплет. При этом одна из связей С—СІ становится практически диссоциированной, другая (вициальная) связь хлор—углерод удлиняется. Таким образом, фактически возникает система, включающая атом хлора и трихлорэтильный радикал.

Квантово-химический анализ показывает, что трансформация ТХЭ в трихлорэтилен и тетрахлорэтилен протекает по сопряженным каналам [23]. При полном отрыве атома хлора и последующем внутримолекулярном дегидрохлорировании образуется трихлорэтилен (реакция (1)). Образование тетрахлорэтилена из ТХЭ (реакция (2)) происходит при дегидрохлорировании ТХЭ в процессе двухкратного межмолекулярного отщепления водорода с элиминированием хлористого водорода [23].

По характеру изменения состава и содержания продуктов превращения ТХЭ при изменении напряжения источника постоянного тока и времени плазмохимического пиролиза можно качественно судить о последовательности основных стадий трансформации ТХЭ и промежуточных продуктов.

Увеличение конверсии ТХЭ приводит к снижению выхода трихлорэтилена и тетрахлорэтилена. Вероятно, первичные продукты превращения ТХЭ (трихлорэтилен и трихлорэтилен) вовлекаются в последующие реакции с образованием перхлоруглеводородов [29—33].

Полученные экспериментальные и литературные данные [23] свидетельствуют о том, что трансформация тетрахлорэтилена в гексахлорбутадиен происходит по схеме, включающей переход молекул тетрахлорэтилена из синглетного в триплетное состояние с разрывом связи С—СІ и последующей димеризацией радикалов (реакция (3)). Аналогично при термическом пиролизе (800—900°С) тетрахлорэтилена образуется гексахлорбутадиен [30].

Образование гексахлорбутадиена из трихлорэтилена может протекать как через разрыв связи С—Н с дальнейшей димеризацией образующихся радикалов (реакция (4)), так и через промежуточное образование в качестве активного прекурсора дихлорацетилена [29].

$$c_{l_2} = c_{l_2} = c_{l$$

При увеличении напряжения источника постоянного тока от 100 до 300 В и длительности плазмохимического пиролиза от 1 до 5 ч содержание тетрахлорэтилена и трихлорэтилена в жидкофазных продуктах уменьшается практически в два раза. Следовательно, с увеличением напряжения источника постоянного тока и времени процесса растет степень конверсии тетрахлорэтилена и трихлорэтилена в их последовательной трансформации. Снижение тетрахлорэтилена и трихлорэтилена (табл. 2 и 3) в продуктах соотносится с увеличением выхода гексахлорбутадиена.

Действие нетермической плазмы на гексахлорбутадиен приводит к разрыву связи С-СІ (энергетический барьер 96.7 кДж/моль) с образованием радикала (I) [34]. Дальнейшая трансформация радикала (I) возможна по нескольким направлениям (реакции (5)–(7)). Полученные экспериментальные результаты свидетельствуют, что наиболее вероятным направлением превращения радикала (I) является присоединение молекулы дихлорацетилена по тройной связи. В ходе последующей циклизации радикала (II) происходит отщепление радикала хлора, что приводит к образованию гексахлорфульвена (реакция (5)). В работах [34, 35] отмечалось, что пиролиз гексахлорбутадиена приводит к совместному образованию гексахлорфульвена и гексахлорбензола. Квантово-химический анализ [34] показывает, что образование гексахлорфульвена наиболее вероятно.

Вторым направлением превращения радикала (I) является присоединение другой молекулы гексахлорбутадиена. При последующем отрыве двух радикалов хлора и замыкании ароматического кольца (реакция (6)) происходит образование октахлорстирола [30].

При высокой степени конверсии ТХЭ (табл. 2 и 3) в продуктах определен 1,2-дихлор-3,4-бис(дихлорметилен)циклобутан. Образование этого соединения

вероятно происходит при конденсации радикала (I) с молекулой ТХЭ (реакция (7)).

Экспериментальные результаты (табл. 2 и 3) показывают, что наиболее энергоэффективно процесс пиролиза осуществляется при напряжении 200 В и времени 1 ч с конверсией ТХЭ 59.8 мас. % и энергозатратами 0.2 (кВт ч)/моль (табл. 2). По степени конверсии и составу образующихся продуктов трансформация ТХЭ при напряжении 200 В близка к результатам пиролиза при напряжении 100 В и времени 4 ч. Однако в случае увеличении времени пиролиза энергозатраты возрастают на 0.11 (кВт ч)/ моль (табл. 3). Следовательно, для повышения степени конверсии ТХЭ энергетически выгоднее увеличение напряжения источника постоянного тока, а не времени пиролиза.

Изменение напряжения источника постоянного тока и времени действия нетермической плазмы обеспечивает значительное повышение синтетического потенциала хлорсодержащих углеводородов и расширяет возможности низковольтных разрядов в жидкой фазе, как метода экстремального воздействия на вещество.

ЗАКЛЮЧЕНИЕ

Нетермическая плазма, генерируемая импульсными электрическими разрядами в жидкой фазе, индуцирует направления реакций тетрахлорэтана, которые не реализуются при термическом пиролизе. Увеличение напряжения с 100 до 300 В при плазмохимическом пиролизе приводит к увеличению конверсии ТХЭ с 21.6 до 71.7 мас. %, снижению выхода трихлорэтилена с 34.2 до 13.2 мас. % и тетрахлорэтилена с 7.2 до 2.9 мас. %. Уменьшение содержание тетрахлорэтилена и трихлорэтилена в смеси связано с образованием гексахлорбутадиена с максимальным выходом 16.2 мас. %.

При увеличении времени действия электрических разрядов с 1 до 5 ч конверсия ТХЭ увеличивается с 21.6 до 68.9 мас. %. Выход трихлорэтилена снижается с 34.2 до 14.6 мас. %, тетрахлорэтилена с 7.2 до 2.7 мас. %. Гексахлорбутадиен является единственным продуктом в жидкой фазе, выход которого увеличивается с 2.4 до 15.5 мас. % с ростром конверсии ТХЭ за счет вторичных превращений тетрахлорэтилена и трихлорэтилена.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена с использованием оборудования центра коллективного пользования "Аналитический центр ИМХ РАН" при поддержке гранта "Обеспечение развития материально-технической инфраструктуры центров коллективного пользования научным оборудованием" (Уникальный идентификатор RF----2296.61321X0017, Номер Соглашения 075-15-2021-670).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Han F., Li W., Yu F., Cui Z.* // Environ. Sci. Pollut. Res. 2014. V. 21. № 9. P. 5810.
- 2. *Benson S.W.*, *Weissman M.* // Int. J. Chem. Kinet. 1982. V. 14. № 12. P. 1287.
- 3. *Kurta S.A., Volinsky A.A., Kurta M.S.* // J. Clean. Prod. 2013. V. 54. P. 150.
- 4. *Treger Y.A.*, *Flid M.R.* // Catal Ind. 2011. V. 3. № 3. P. 271.
- 5. Qi Y., Fenes E., Ma H., Wang Y., Rout K.R., Fuglerud T., Piccinini M., Chen D. // App. Surface Sci. 2020. V. 521.
- 6. *Turner M.M.* // Plasma Process Polym. 2017. V. 14. № 1–2. 1600121.
- 7. *Economou D.J.* // Plasma Process Polym. 2017. V. 14. № 1–2. 1600152.
- 8. *Bruggeman P.J., Leys C.* // J. Phys. D: Appl. Phys. 2009. V. 42. № 5. 053001.
- 9. *Lebedev Y.A.* // High Temperature. 2018. V.56. № 5. P. 811.
- 10. *Oda T., Takahashi T., Kohzuma S.* // IEEE Trans. Ind. Appl. 2001. V. 37. № 4. P. 965.
- 11. *Oda T., Takahashi T., Taka K.* // IEEE Trans. Ind. Appl. 1999. V. 35. № 2. P. 373.
- 12. *Oda T.* // Journal of Electrostatics. 2003. V. 57. № 3-4. P. 293.
- 13. Li C.T., Yang R., Shih M., Chen C.Y., Hsieh L.T. // J. Chem. Technol. Biotechnol. 2003.V. 78. № 7. P. 817.
- 14. *Francke K., Miessner H., Rudolph R.* // Plasma Chem. Plasma Process. 2000. V. 20. № 3. P. 393.
- 15. *Kirkpatrick M., Finney W., Locke B.* // Plasmas and Polymers. 2003. V. 8. № 3. P. 165.
- 16. *Futamura S., Yamamoto T.* // IEEE Transactions on Industry Applications. 1997. V. 33. № 2. P. 447.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 58 № 2 2024

- 17. *Hsiao M., Merritt B., Penetrante B., Vogtlin G., Wall-man P.* // J. Appl. Phys. 1995. V. 78. № 5. P. 3451.
- 18. *Magureanu M., Mandache N., Parvulescu V.* // Plasma Chem. Plasma Process. 2007. V. 27. № 6. P. 679.
- 19. *Li S.*, *Dang X.*, *Yu X.*, *Abbas G.*, *Zhang Q.*, *Cao L.* // Chem. Eng. J. 2020. V. 388. 124275.
- Mustafa M., Fu, X., Liu Y., Abbas Y., Wang H., Lu W. // J. Hazard. Mater. 2018. V. 347. P. 317.
- 21. Gushchin A.A., Grinevich V.I., Izvekova T.V., Kvitkova E.Y., Tyukanova K.A., Rybkin V.V. // Plasma Chem. Plasma Process. 2019. V. 39. № 2. P. 461.
- 22. Gaikwad V., Kennedy E., Mackie J., Holdsworth C., Molloy S., Kundu S., Dlugogorski B. // Plasma Process Polym. 2013. V. 10. № 2. P. 141.
- 23. Bodrikov I., Titov E.Y., Vasiliev A., Titov D., Ivanova A., Subbotin A. // Plasma Process Polym. 2022. V. 19. № 8. P. 37.
- 24. Titov E.Y., Titov D.Y., Bodrikov I.V., Kut'in A.M., Kurskii Y.A., Gazizzulin R.R. // High Energy Chem. 2018. V. 52. P. 512.
- 25. Titov E. Yu., Bodrikov I.V., Serov A.I., Kurskii Yu.A., Titov D. Yu., Bodrikova E.R. // Energies. 2022. V. 15. № 9. P. 3400.
- 26. Bodrikov I.V., Titov E.Yu., Subbotin A.Y., Grinvald I.I., Titov D.Yu., Razov E.N. // Plasma Process Polym. 2020. V. 17. № 9. P. 1.

- 27. Bodrikov I.V., Kut'in A.M., Titov E.Yu., Titov D.Yu., Gazizullin R.R. // High Energy Chem. 2017. V. 51. № 1. P. 60.
- 28. Bodrikov I.V., Titov E.Yu., Grinval'd I.I., Titov D.Yu., Kurskii Yu.A., Razov E.N. // High Energy Chem. 2020. V. 54. № 1. P. 72.
- 29. Mulholland J.A., Sarofim A.F., Sosothikul P., Monchamp P.A., Plummer E.F., Lafleur A.L. // Combust Flame. 1992. V. 89. № 1. P. 103.
- 30. *Tirey D.A.*, *Taylor P.H.*, *Kasner J.*, *Dellinger B.* // Combust Sci Technol. 1990. V. 74. № 1-6. P. 137.
- 31. Fazekas P., Czégény Z., Mink J., Szabó P.T., Keszler A.M., Bódis E., Klébert S., Szépvölgyi J., Károly Z. // Plasma Chem. Plasma Process. 2018. V. 38. № 4. P. 771.
- 32. Sutherland I.W., Hamilton N.G., Dudman C.C., Jones P., Lennon D., Winfield J.M. // Appl. Catal. A. Gen. 2011. V. 399. № 1–2. P. 1.
- Sutherland I.W., Hamilton N.G., Dudman C.C., Jones P., Lennon D., Winfield J.M. // Appl. Catal. A. Gen. 2014.
 V. 117. P. 4198.
- 34. *McIntosh G.J.*, *Russell D.K.* // Journal of Physical Chemistry A. 2013. V. 117. № 20. P. 4183.
- 35. *McIntosh G.J.*, *Russell D.K.* // Journal of Physical Chemistry A. 2013. V. 117. № 20. P. 4198.