—— — ПЛАЗМОХИМИЯ ——

УДК 537.523.9:532.64.08

ВЛИЯНИЕ ХОЛОДНО-ПЛАЗМЕННОЙ ОБРАБОТКИ НА МОДИФИКАЦИЮ ПОВЕРХНОСТИ РИСОВЫХ ЗЕРЕН

© 2023 г. Б. Б. Балданов^a, *, Ц. В. Ранжуров a , С. В. Гомбоева b , И. И. Бадмаева b

^а Институт физического материаловедения СО РАН, ул. Сахьяновой, 6, Улан-Удэ, 670031 Россия ^b Восточно-Сибирский государственный университет технологий и управления, ул. Ключевская, 40в, Улан-Удэ, 670013 Россия

*E-mail: baibat@mail.ru
Поступила в редакцию 17.01.2023 г.
После доработки 14.03.2023 г.
Принята к публикации 15.03.2023 г.

Изучено влияние холодной плазмы тлеющего разряда атмосферного давления на поверхностные свойства рисовых зерен. Установлено, что в результате воздействия нетермической плазмы тлеющего разряда атмосферного давления на поверхность семян, поверхность становится гидрофильной, и характеризуется снижением контактного угла смачивания, возрастанием поверхностной энергии и увеличением шероховатости поверхности, что свидетельствует об эффективном формировании полярных групп на поверхности рисовых зерен.

Ключевые слова: нетермическая плазма, рисовые зерна, плазменная модификация, тлеющий разряд **DOI:** 10.31857/S0023119323040046. **EDN:** OMRRMJ

ВВЕДЕНИЕ

В последнее время плазменные технологии активно внедряются в область пищевой промышленности, как новые и инновационные технологии [1—3]. В [4] показан ряд направлений в пищевой промышленности, где использование холодной плазмы имеет большие перспективы внедрения.

В [5—7] показана возможность изменения кулинарных и текстурных свойств риса с применением нетермических методов обработки, таких как ультразвук, гамма-облучение и т.д. В этой связи, область исследований, связанная с изучением влияния холодно-плазменной обработки на свойства рисовых зерен, является наименее исследованной [8, 9, 4]. Как известно, холодно-плазменная обработка позволяет увеличить поверхностную энергию материалов, с целью улучшения смачиваемости поверхности [10].

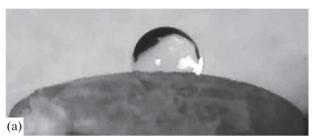
С другой стороны, модификация поверхности и увеличение поверхностной энергии (повышение гидрофильности) рисовых зерен оказывает существенное влияние на время приготовления. В [9] для улучшения кулинарных свойств коричневого риса применялась холодная плазма тлеющего разряда постоянного тока, после плазменной обработки значительно увеличилось водопоглощение риса и сократилось время приготовления.

Основной целью данной работы является изучение влияния холодной плазмы тлеющего разряда атмосферного давления на поверхностные свойства рисовых зерен.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для плазменной обработки семян использовался источник объемной холодной аргоновой плазмы на основе тлеющего разряда атмосферного давления (ТРАД) [11] (рис. 1).

Обработке подвергались рисовые зерна производства "Краснодар". Зерна равномерно распределялись по поверхности плоского анода, время обработки составляет 1 мин. Зерна не прошедшие плазменную обработку, использовались в качестве контроля.


Изменение свойств поверхности характеризовали значениями контактных углов θ, которые определяли методу лежащей капли с помощью микроскопа по воде (бидистилляту). Величины контактных углов определялись с помощью программного пакета DropSnake — LB-ADSA [12]. Были подготовлены несколько партий рисовых зерен, каждая партия содержала 100 семян. Семена из одной партии были подвергнуты воздействию плазмы, в то время как семена из другой партии использовались как контроль. Рассчитывали среднее значение контактного угла и среднюю погрешность.

Величины полных поверхностных энергий у рассчитывали по методу Ньюмана [13]:

$$\gamma = 2.9 \times 10^{-5} (\Theta)^3 - 0.00652 (\Theta)^2 - 0.132 (\Theta) + 72.8.$$
 (1)

Рис. 1. Плазменная обработка рисовых зерен в ТРАД. Межэлектродное расстояние d=2 см.

Рис. 2. Капля воды, посаженная на поверхность необработанного (a) и обработанного холодной плазмой (б) рисового зерна.

Топография поверхности рисовых зерен исследовалась с помощью электронного микроскопа SEM TM-1000 с системой микроанализа Hitachi TM-1000.

Для определения водопоглощения риса отбирали пять партий по 10 рисовых зерен на одно измерение. Измеряли начальную массу партии m_0 и массу m после выдержки в течение определенного времени в дистиллированной воде комнатной температуры. Перед взвешиванием излишки воды с поверхности зерновок риса удаляли бумажной салфеткой. Водопоглощение рассчитывали по формуле:

$$\epsilon_{\rm H_2O} = \frac{m}{m_0} \times 100\%.$$
(2)

По полученным пяти величинам водопоглощения определяли среднее его значение и среднюю погрешность.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 представлены значения контактного угла капли воды на поверхности рисового зерна. Для необработанных образцов начальный контактный угол составляет $\theta=110^\circ$ и уменьшается до $\theta=60^\circ$ после воздействия плазмы на поверхность зерна (время обработки 60 с). Уменьшение контактного угла связано с увеличением гидрофильной природы субстрата после плазменной обработки [4]. Аналогичное уменьшение контактного угла после воздействия воздушной плазмы на поверхность рисовых зерен отмечается в [14].

Другая причина уменьшения контактного угла заключается в том, что холодно-плазменная обработка увеличивает эффективную площадь контакта (рис. 2), что приводит к уменьшению угла контакта.

Таблица 1. Контактный угол и полная поверхностная энергия рисовых зерен

Образец	θ, град	$\gamma, \frac{M \mathcal{L} \mathcal{K}}{M^2}$
Контроль	110.0 ± 4.0	17.99 ± 2.05
После плазменной обработки	60.1 ± 1.5	47.71 ± 0.90

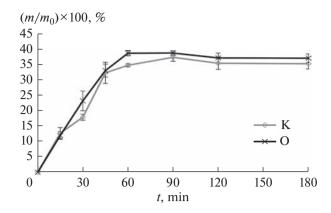


Рис. 3. Водовпитывание необработанного (К) и обработанного риса (О).

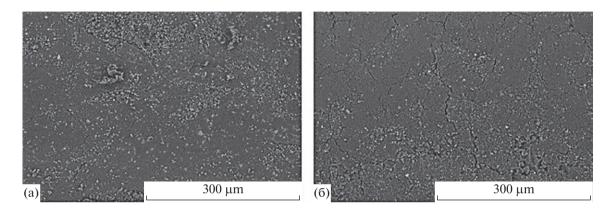


Рис. 4. Микрофотография поверхности необработанного (а) и обработанного риса (б).

К уменьшению контактного угла приводит также увеличение мощности разряда и времени обработки, что связано с модификацией поверхности рисового зерна. Наблюдаемое быстрое уменьшение контактного угла для обработанных образцов рисовых зерен, связано с увеличением поглощения воды из-за увеличения гидрофильности и шероховатости поверхности зерна (рис. 3).

После воздействия плазмы на поверхность рисовых зерен, значительно увеличивается поверхностная энергия, что связано с эффективным увеличением площади поверхности контакта и включением гидрофильных соединений на границе раздела, что способствует уменьшению контактного угла и делает поверхность более гидрофильной. Поверхностная энергия необработанного образца рисового зерна составляет $\gamma = 17.99 \pm 2.05 \text{ мДж/м}^2$ и увеличивается до $\gamma = 47.71 \pm 0.90 \text{ мДж/м}^2$ (табл. 1) после плазменной обработки.

Травление поверхности риса после плазменной обработки вызванное воздействием холодной плазмой представлено на рис. 4.

Поверхность необработанного рисового зерна представляет нормальную зернистую структуру

без каких-либо заметных изменений в морфологии слоя. После холодно-плазменной обработки на поверхности зерен наблюдаются трещины и впадины, образование отверстий, через которые вода может проникать внутрь зерна, аналогичные результаты получены в [4, 8]. При увеличении мощности разряда и времени обработки шероховатость поверхности рисового зерна увеличивается. Бомбардировка поверхности рисового зерна энергетическими частицами плазмы разрушает ковалентные связи на поверхности, в результате чего образуются мелкие летучие мономеры, которые испаряются и удаляются с поверхности. Плазменная обработка изменяет естественную морфологию поверхности рисовых зерен, что приводит к улучшению кулинарных и текстурных параметров, при этом время варки риса сокращается с 20 до 15 мин по сравнению с необработанным рисом.

ВЫВОДЫ

Плазменная обработка рисовых зерен позволяет существенно сократить время приготовления риса, что свидетельствует об экономии энергии. Сокращение времени приготовления связа-

но с увеличением гидрофильности рисовых зерен и обусловлены травлением/абляцией поверхности, вызванной воздействием энергетических частиц плазмы. Уменьшение контактного угла и увеличение поверхностной энергии образцов, обработанных плазмой, свидетельствует об эффективном формировании полярных групп на поверхности рисовых зерен. С увеличением мощности разряда и времени обработки, травление поверхности также увеличивается.

СПИСОК ЛИТЕРАТУРЫ

- Pankaj S.K., Misra N.N., Cullen P.J. // Innovative Food Science and Emerging Technologies. 2013. V. 19. P. 153.
- Surowsky B., Fischer A., Schlueter O., Knorr D. // Innovative Food Science and Emerging Technologies. 2013. V. 19. P. 146.
- 3. Misra N.N., Sullivan C., Panka S.K., Alvarez-Jube L., Cama R., Jacoby F., Cullen P.J. // Innovative Food Science and Emerging Technologies. 2014. V. 26. P. 456.

- 4. Thirumdas R., Sarangapani C., Annapure U.S. // Food Biophysics. 2015. V. 10. P. 1.
- Cui L., Pan Z., Yue T., Atungulu G.G., Berrios J. // Cereal Chemistry. 2010. V. 87. P. 403.
- 6. Sabularse V.C., Liuzzo J.A., Rao R.M., Grodner R.M. // Journal of Food Science. 1991. V. 56. P. 96.
- 7. Sung W.C. // Radiation Physics and Chemistry. 2005. V. 73. P. 224.
- Chen H.H. // Food and Bioprocess Technology. 2014.
 V. 7. P. 2484.
- 9. Chen H.H., Chen Y., Chang C.H. // Food Chemistry. 2012, V. 135, P. 74.
- 10. Deshmukh R.R., Shetty A.R. // Journal of Applied Polymer Science. 2007b. V. 104. P. 449.
- 11. *Семенов А.П., Балданов Б.Б., Ранжуров И.В.* // Приборы и техника эксперимента. 2020. № 2. С. 149.
- 12. Stalder A.F., Melchior T., Müller M. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2010. V. 364. № 1. P. 72.
- 13. Deshmukh R.R., Shetty A.R. // Journal of Applied Polymer Science. 2008. V. 107. P. 3707.
- 14. Mirabedini S.M., Arabi H., Salem A., Asiaban S. // Progress in Organic Coating, 2007. 60. V. 105.