УДК 550.72:631.46:574.24

ПОСТПИРОГЕННЫЕ ИЗМЕНЕНИЯ МИКРОФЛОРЫ И ХИМИЧЕСКОГО СОСТАВА БОЛОТНЫХ ВОД ОСУШЕННОГО УЧАСТКА БАКЧАРСКОГО БОЛОТА (ТОМСКАЯ ОБЛАСТЬ)

© 2024 г. В. С. Овсянникова^{1, *}, Ю. А. Харанжевская^{2, 3, **}, А. А. Синюткина ^{2, ***}

¹ФГБУН Институт химии нефти СО РАН, Томск, 634055 Россия

²Сибирский научно-исследовательский институт сельского хозяйства и торфа Россельхозакадемии, Томск. 634050 Россия

³Национальный исследовательский Томский государственный университет, Томск, 634050 Россия

*e-mail: varja@ipc.tsc.ru **e-mail: kharan@yandex.ru Поступила в редакцию 05.12.2023 г. После доработки 11.12.2023 г. Принята к публикации 13.12.2023 г.

Проведен сравнительный анализ изменения микробиологического и химического состава воды и торфа фонового и постпирогенного участков осушенного Бакчарского болота в течение вегетационного сезона $2022~\rm r$. Показано, что в верхнем слое (до $50~\rm cm$) на горелом участке даже через шесть лет после пожара сохраняется его влияние: нарушена сезонная динамика содержания ряда компонентов (O_2 , CO_2 , NH_4^+ , NO_3^-), численности микрофлоры разных физиологических групп — аммонифицирующей, педотрофной, олиготрофной, углеводородокисляющей, целлюлозоразрушающей, денитрифицирующей, сульфатредуцирующей. Кроме того, на фоновом и постпирогенном участках отличаются корреляционные связи между анализируемыми микробиологическими и физико-химическими параметрами, что говорит о долгосрочном влиянии пирогенного воздействия на процессы накопления-деструкции органического вещества.

Ключевые слова: торфяная залежь, микрофлора торфа, постпирогенные изменения, физико-химические характеристики, коэффициент корреляции

DOI: 10.31857/S0023117724020117 **EDN**: OLNTNH

ВВЕДЕНИЕ

Исследование закономерностей и особенностей функционирования микробиоценозов в специфических условиях болотных экосистем могут дать представления о направленности биохимических процессов в торфяной залежи и их влиянии на состав органического вещества торфа. Однако в настоящее время данные о динамике численности микроорганизмов в торфах и факторах, влияющих на нее, немногочисленны. Один из меняющих состояние биоценозов факторов – пожары, особенно уязвимыми к которым являются осущенные торфяники, так как осущенный торф может гореть по всей толщине с выделением токсичных продуктов, попадающих в воздух, воду и почву. Долговременными последствиями являются снижение запаса органического вещества, увеличение рН болотных вод и обогащение их зольными соединениями, ускорение процессов минерализации органического вещества, деградация растительного сообщества и, как следствие, вторичное выделение парниковых газов [1, 2].

Постпирогенные изменения болотных биоценозов исследовали многие коллективы [3–5], однако микрофлору и физико-химические характеристики воды и торфа на выгоревших участках осушенных торфяников ранее не исследовали.

В данной работе приведены результаты сравнительных анализов микробиологических и физико-химических характеристик торфа и болотных вод на выгоревшем и неповрежденном осушенных участках Бакчарского болота на протяжении вегетационного сезона 2022 г., через шесть лет после сильного пожара.

МАТЕРИАЛЫ И МЕТОДЫ

Бакчарское водораздельное болото (северо-восточные отроги Большого Васюганского болота) расположено в междуречье рек Бакчар и Икса (бассейн реки Чая) в Бакчарском районе Томской области. Для него характерна типичная для лесоболотной зоны Западной Сибири смена ландшафтов: верховой болотный массив с переходными и низинными окраинами, заболочен-

ные березово-сосновые, березово-еловые леса и обводненная речная долина. Мелиоративные работы, проводимые на участке Бакчарского болота с 1970-х годов, стали одной из причин лесных и торфяных пожаров.

Пробы торфа отбирали на территории осущенного участка раз в месяц с апреля по сентябрь 2022 г. с двух точек: выгоревший в 2016 г. участок (П) и фоновый осушенный участок (Ф), с глубин 0—25 и 25—50 см с помощью торфяного бура. Воды для химических анализов отбирали из стационарных скважин глубиной 1 м в непосредственной близости от мест отбора торфа, после предварительного вычерпывания стоящей воды, для исключения влияния атмосферных осадков.

Метеорологические условия фиксировали автономными сенсорными датчиками температуры, скорости ветра, влажности воздуха и жидких атмосферных осадков, установленными на высоте 2 м на стационарных точках наблюдения Васюганского болота.

Влажность образцов торфа определяли по ГОСТ 28268-89. Эти значения использовали для последующего пересчета содержания микрофлоры в образцах с разной влажностью на 1 г сухого торфа.

Болотные воды анализировали по ряду показателей: температуру воды, рН, О,, СО, определяли в полевых условиях после отбора, остальной объем пробы консервировали хлороформом для последующего определения NO_{3}^{-} , NH_{4}^{+} , соляной кислотой для определения Fe общ. Содержание растворенного O_2 в болотных водах определяли оксиметром НІ 9146 фирмы "HANNA" (Германия). Величину рН измеряли полевым прибором pH-200 фирмы "HM Digital" (South *Korea*), окислительно-восстановительный потенциал (Eh) — с помощью полевого прибора ORP-200 "HM Digital" (South Korea). Содержание растворенного углекислого газа определяли титрованием проб раствором NaOH в присутствии сегнетовой соли и индикатора фенолфталеин (ΦP.1.31.2005.01580).

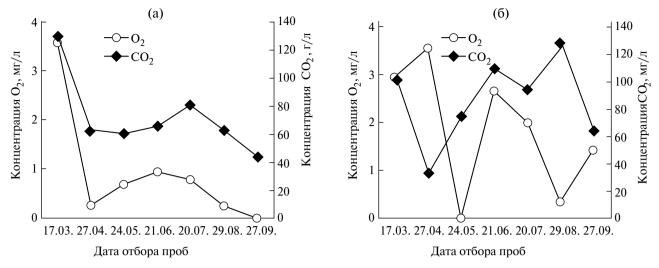
Концентрацию HCO_3^- , Cl^- в воде устанавливали титриметрическим методом, Fe_{o6m} , NO_3^- , NH_4^+ , SO_4^{2-} — спектрофотометрическим методом, концентрацию ионов K^+ , Na^+ — методом пламенной фотометрии ($\Pi\Phi A\text{-}378$, Россия). Минерализацию вод (M) оценивали по сумме ионов, химическое потребление кислорода ($X\Pi K$) в болотных водах определяли согласно [6].

В пробах торфа определяли содержание микрофлоры разных физиологических групп: ам-

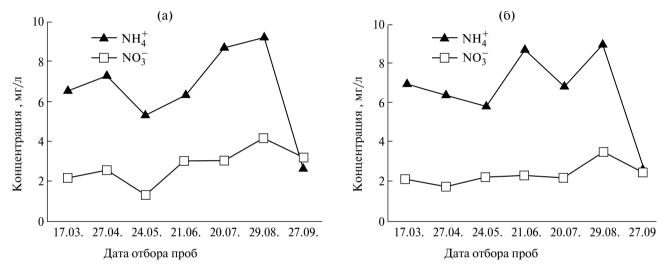
монифицирующей (АМ) – на мясопептонном агаре [7]; педотрофной (ПМ), разрушающей гуминовые вещества - на почвенном агаре: олиготрофной (ОМ), нуждающейся в минимальных концентрациях углерода и азота. – на голодном агаре [8]; углеводородокисляющих бактерий (УОБ) – на агаризованной среде Мюнца с нефтью в качестве единственного источника углерода и энергии [6]; целлюлозоразрушающей микрофлоры (ЦМ) – на агаризованной минеральной среде Омелянского с бумажным фильтром [8]; анаэробных серувосстанавливающих бактерий (СВБ), использующих сульфат-ион в качестве терминального акцептора электронов и восстанавливающих сульфаты до сульфидов, на среде Таусона [9]; денитрифицирующих бактерий (ДНБ), использующих нитрат-ион в качестве терминального акцептора электронов, на среде Гильтая [6].

Для установления взаимосвязей анализируемых показателей рассчитывали парные коэффициенты между всеми показателями статистическими методами в Microsoft Office Excel 2007.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ


Анализ климатических наблюдений за сезон 01.10.2021 г.—30.09.2022 г. показал, что среднегодовая температура воздуха составила $+1.72...+1.83^{\circ}$ С, весенний переход средних температур воздуха выше 0° С отмечен в начале апреля, среднемесячная температура в апреле составила $+4.70^{\circ}$ С, а в самых теплых месяцах, июне, июле, — +15.4 и $+17.5^{\circ}$ С соответственно. С начала августа началось устойчивое снижение температуры воздуха, первые заморозки отмечены в конце сентября.

За период апрель—сентябрь 2022 г. выпало около 376 мм осадков в жидком виде, большая часть из них пришлась на июнь—июль.


Средняя скорость ветра на участках наблюдений составила 1.43 м/с, наибольшая скорость отмечена в переходные месяцы сезонов года (октябрь—ноябрь, февраль—март), максимальная скорость ветра была равна 4.36 м/с. В летний период скорость ветра снизилась до 0.15—3.31 м/с.

Влажность воздуха на участках наблюдений за 2022 г. в среднем составила 90%. Наибольшая среднемесячная влажность воздуха отмечена в ноябре—марте (95%), минимальная — в апреле—мае (52—76%). С июня по сентябрь отмечен рост влажности с 69 до 100%, за счет обильных осадков.

Химический анализ болотных вод показал, что концентрация растворенного кислорода и углекислого газа в водах фонового и горелого участка

Рис. 1. Изменение концентрации растворенного O_2 и CO_2 в болотных водах осушенного фонового (а) и постпирогенного (б) участков Бакчарского болота в течение сезона.

Рис. 2. Изменение XПК и Еh в болотных водах осушенного фонового (a) и постпирогенного (б) участков Бакчарского болота в течение сезона.

изменялась неодинаково: в воде фонового участка максимальная концентрация O_2 (3.58 мг/л) отмечена в период снеготаяния в апреле, а в сентябре — снизилась до нуля. Динамика концентрации CO_2 в воде фонового участка имела похожую форму (рис. 1, а). В воде на месте после пожара повышенным концентрациям O_2 соответствовали минимальные количества CO_2 , и их содержание менялось скачкообразно (рис. 1, б).

Сезонные закономерности изменения $X\Pi K$ и Eh болотных вод фонового и постпирогенного участков отличались сниженной $X\Pi K$ на постпирогенном участке в начале анализируемого периода, затем картина была сходной до конца сезона (рис. 2a, 6).

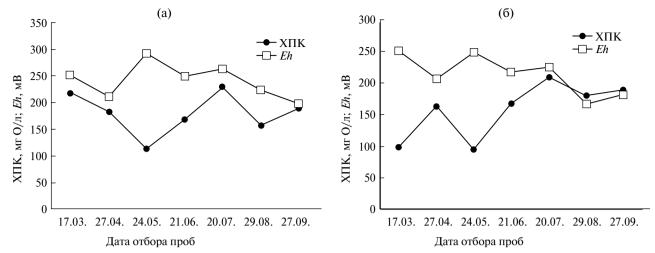
Содержание иона аммония и нитрат-иона в воде фонового и постпирогенного участков

менялось в течение сезона сходным образом, с максимальными значениями в июне—августе и снижением до минимума в конце сентября (рис. 3a, б).

Микробиологический анализ торфа на протяжении вегетационного сезона 2022 г. показал, что численность микрофлоры в пробах фонового и постпирогенного участков менялась различным образом. Для фонового участка максимальные количества всех групп, кроме целлюлозоразрушающей, отмечены в августе и сентябре, минимальные — в июне и июле (рис. 4—6). На участке после пожара, напротив, численность аммонифицирующей и целлюлозоразрушающей микрофлоры достигала максимума в летние месяцы, снижаясь к концу сезона. В целом, на постпирогенном участке численность микрофлоры

Таблица 1. Коэффициенты корреляции между микробиологическими и химическими параметрами для торфяной залежи осущенного участка (фон)

Параметр	AM	ПМ	OM	УОБ	ЦМ	СВБ	ДНБ
ПМ	1.00	1.00					
OM	1.00	1.00	1.00				
УОБ	1.00	1.00	1.00	1.00			
ЦМ	-0.49	-0.45	-0.47	-0.47	1.00		
СВБ	0.83	0.78	0.80	0.81	-0.64	1.00	
ДНБ	0.99	1.00	1.00	1.00	-0.44	0.76	1.00
$\mathrm{NH_4}^+$	0.45	0.52	0.49	0.48	-0.16	-0.04	0.54
NO_3^-	0.70	0.67	0.68	0.69	-0.77	0.70	0.67
SO_4^{2-}	-0.48	-0.44	-0.46	-0.46	0.98	-0.59	-0.44
HCO ₃ -	-0.36	-0.32	-0.34	-0.34	0.48	-0.48	-0.31
M	-0.04	0.02	-0.01	-0.01	0.55	-0.39	0.03
pН	-0.06	-0.04	-0.05	-0.05	0.82	-0.16	-0.04
O_2	-0.40	-0.34	-0.37	-0.38	0.21	-0.72	-0.32
Eh	-0.29	-0.23	-0.26	-0.27	0.28	-0.57	-0.22
ХПК	-0.17	-0.19	-0.18	-0.18	-0.55	-0.05	-0.19
CO_2	-0.09	-0.01	-0.04	-0.06	-0.06	-0.52	0.01
<i>T</i> , °C	0.41	0.41	0.41	0.41	-0.82	0.38	0.41


Таблица 2. Коэффициенты корреляции между микробиологическими и химическими параметрами для торфяной залежи осушенного участка через шесть лет после пожара

Параметр	AM	ПМ	OM	УОБ	ЦМ	СВБ	ДНБ
ПМ	0.79	1.00					
OM	0.99	0.80	1.00				
УОБ	0.92	0.81	0.92	1.00			
ЦМ	-0.17	0.07	-0.08	-0.25	1.00		
СВБ	-0.11	-0.13	-0.18	-0.15	-0.57	1.00	
ДНБ	0.95	0.58	0.93	0.85	-0.30	0.04	1.00
$\mathrm{NH_4}^+$	0.74	0.75	0.77	0.73	0.26	-0.71	0.53
NO_3^-	0.84	0.41	0.82	0.61	-0.22	0.13	0.92
SO ₄ ²⁻	-0.18	-0.29	-0.10	-0.24	0.67	-0.21	-0.05
HCO ₃ -	-0.37	-0.30	-0.29	-0.47	0.88	-0.33	-0.35
M	-0.15	-0.14	-0.07	-0.34	0.92	-0.53	-0.20
pН	-0.37	-0.45	-0.36	-0.11	-0.25	0.31	-0.14
O_2	-0.24	0.28	-0.26	-0.04	-0.13	0.01	-0.47
Eh	-0.62	-0.48	-0.55	-0.53	0.65	-0.68	-0.67
ХПК	0.21	0.12	0.12	0.12	-0.72	0.31	0.16
CO_2	0.71	0.38	0.72	0.42	0.15	-0.37	0.65
<i>T</i> , °C	0.36	-0.05	0.34	0.01	-0.05	-0.13	0.39

всех групп чаще была ниже, чем на неповрежденном участке.

Для выявления связи микробиологических и физико-химических показателей рассчитаны коэффициенты корреляции между исследуемыми параметрами (табл. 1, 2). Показано, что для фонового участка осушенного болота

очень сильная корреляционная связь (коэффициент 0.9—1.0) была между микрофлорой четырех групп: аммонифицирующей, педотрофной, олиготрофной и денитрифицирующей, а также между численностью целлюлозоразрушающей микрофлооры и концентрацией сульфат-иона. Высокая связь (коэффициент корре-

Рис. 3. Изменение концентрации $NH_4^+ NO_3^-$ в болотных водах осушенного фонового (а) и постпирогенного (б) участков Бакчарского болота в течение сезона.

ляции 0.7—0.9) отмечена между численностью сульфатредуцируюих бактерий и другими группами микрофлоры, а также между численностью аммонифицирующих и сульфатредуцирующих бактерий с концентрацией нитрат-иона (табл. 1).

Средняя связь (коэффициент 0.5—0.7) установлена для концентраций иона аммония с количеством педотрофных и денитрифицирующих бактерий, нитрат-иона с численностью олиготрофных и углеводородокисляющих бактерий, а также для минерализации с целлюлозоразрушающими микроорганизмами.

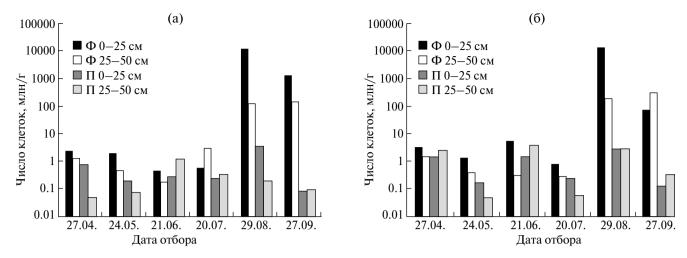
Отрицательная корреляция (коэффициент от -0.5 до -0.9) установлена для групп целлюлозоразрушающей микрофлоры с содержанием СВБ, нитрат-иона, ХПК и температурой торфа, а также СВБ с содержанием сульфат-иона, растворенного кислорода и окислительно-восстановительного потенциала.

Постпирогенное воздействие изменило связи между показателями: снизилась корреляция между содержанием групп аммонифицирующей, педотрофной и денитрифицирующей микрофлоры, а связь этих групп с целлюлозоразрушающей и сульфатредуцирующей микрофлорой исчезла (табл. 2). Отмечена закономерно высокая связь между содержанием нитрат-иона и группой ДНБ; между ионом аммония и всеми группами микрофлоры, кроме целлюлозоокисляющей и СВБ; *Еh*, содержанием сульфат-иона и гидрокарбонатов с целлюлозоокисляющей группой; содержанием растворенного СО,

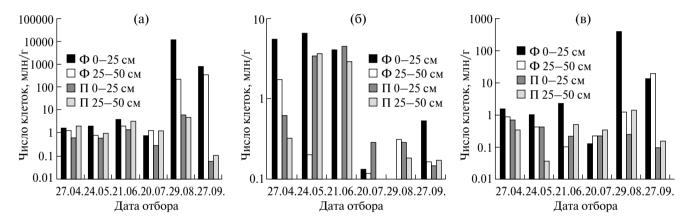
с олиготрофной и денитрифицирующими группами.

Отрицательная корреляция (коэффициент от -0.5 до -0.9) на постпирогенном участке была установлена для ОВП и всех групп микрофлоры, кроме педотрофной и целлюлозоразрушающей; содержания СВБ с минерализацией, ОПВ и ионом аммония.

ЗАКЛЮЧЕНИЕ


В целом, по прошествии шести лет после сильного пожара постпирогенное воздействие на осушенном участке торфяной залежи проявилось в нарушении сезонной динамики физико-химических и микробиологических показателей относительно фона: снижении численности микрофлоры в весенне-летние месяцы, смещении максимумов и минимумов концентраций отдельных компонентов (O_2 , CO_2 , NH^+_4 , NO^-_3) и численности микрофлоры на другие периоды, изменении характера и тесноты связи между анализируемыми параметрами.

ФИНАНСИРОВАНИЕ РАБОТЫ


Работа выполнена в рамках государственного задания ИХН СО РАН (НИОКТР 121031500046-7), финансируемого Министерством науки и высшего образования Российской Федерации.

КОНФЛИКТ ИНТЕРЕСОВ

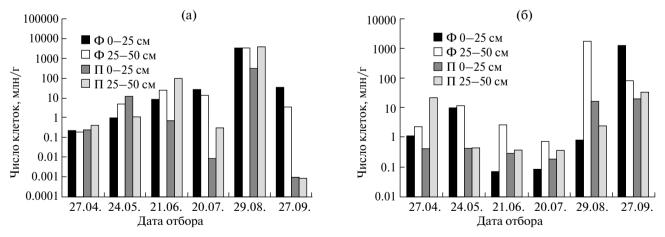

Авторы данной работы заявляют, что у них нет конфликта интересов.

Рис. 4. Динамика численности аммонифицирующей (а) и педотрофной (б) микрофлоры в торфе осушенного фонового и постпирогенного участков Бакчарского болота в течение сезона 2022 г.

Рис. 5. Динамика численности олиготрофных (а), целлюлозоразрушающих (б) и углеводородокисляющих (в) бактерий в торфе осушенного фонового и постпирогенного участков Бакчарского болота в течение сезона 2022 г.

Рис. 6. Динамика численности денитрифицирующих (а) и сульфатредуцирующих (б) бактерий в торфе осушенного фонового и постпирогенного участков Бакчарского болота в течение сезона 2022 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. Данилова О.В., Белова С.Э., Куличевская И.С., Дедыш С.Н. // Микробиология. 2015. Т. 84. № 5. С. 546552. https://doi.org/10.7868/S0026365615050043
- 2. *Маслов М.Н., Маслова О.А., Копеина Е.И //* Почвоведение. 2020. № 3. С. 330—339. https://doi.org/10.31857/S0032180X20030041
- 3. *Соловьев С. В.* Экологические последствия лесных и торфяных пожаров: Автореф. дис. канд. техн. наук. М., 2006. 28 с.
- Гашкова Л.П. Геосферные исследования. // 2022. № 1. C. 118–125. https://doi.org/10.17223/25421379/22/9

- Малашук А.А., Филиппов Д.А. Трансформация экосистем. 2021. № 4 (1). С. 104–121.
 https://doi.org/10.23859/estr-200512
- 6. *Романенко В.И., Кузнецов С.И.* Экология микроорганизмов пресных вод: лабораторное руководство. М.: Наука, 1974 г. 194 с.
- 7. Терещенко Н.Н., Акимова Е.Е., Минаева О.М. Современные методы оценки микробиологических свойств и экологического статуса почвы: практикум. Томск: Изд. дом ТГУ, 2017. 152 с.
- 8. Звягинцев Д.Г. Методы почвенной микробиологии и биохимии. М.: Изд-во МГУ, 1991. 304 с.
- 9. *Бабьева И.П., Зенова Г.М.* Биология почв. М.: Изд-во МГУ, 1983. 248 с.

Post-Pyrogenic Changes in the Microflora and Chemical Composition of Peat Waters of the Drained Area of the Bakchar Bog (Tomsk Region)

V. S. Ovsyannikova^{1, *}, Y. A. Kharanzhevskaya^{2, 3, **}, A. A. Sinyutkina^{2, ***}

¹Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences, Tomsk, 634055 Russia ²Siberian Research Institute of Agriculture and Peat of the Russian Academy of Agricultural Sciences, Tomsk, 634050 Russia ³National Research Tomsk State University, Tomsk, 634050 Russia

> * e-mail: varja@ipc.tsc.ru ** e-mail: kharan@yandex.ru

A comparative analysis of changes in the microbiological and chemical composition of water and peat in the drained reference and post-pyrogenic areas of the Bakchar bog was performed during the growing season of 2022. It has been revealed that peat-bog fire effect persists in the upper layer (up to 50 cm) of the post-pyrogenic area even 6 years after the fire. It manifests itself in a disruption of the seasonal dynamics of the content of a number of components (O₂, CO₂, NH⁺₄, NO⁻₃), and in the variance of count of microflora of different physiological groups, such as ammonifying, pedotrophic, oligotrophic, hydrocarbon-oxidizing, cellulose-destructing, denitrifying, and sulfate-reducing groups. In addition, the correlations between the analyzed microbiological and physicochemical parameters differ for the reference and post-pyrogenic areas, which suggests the long-term pyrogenic effect on the processes of accumulation and destruction of organic matter.

Keywords: peat deposit, peat microflora, post-pyrogenic changes, physicochemical characteristics, correlation coefficient