[NiEn3]MoO4: Features of the Phase Transition and Thermal Decomposition in the Presence of Lithium Hydride


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The crystal structural characteristics of the [NiEn3]MoO4 complex salt (En is ethylenediamine) at 90 K are as follows: space group \(P\overline 3 ,\;a = 15.9307\left( 9 \right)\;\acute{\mathring{\mathrm{A}}} ,\;c = 9.9238\left( 6 \right)\;\acute{\mathring{\mathrm{A}}} ,\;V = 2181.1\left( 3 \right)\;{\acute{\mathring{\mathrm{A}}} ^3},\;Z = 6,\;{d_{\rm{x}}} = 1.822\;{\rm{g/c}}{{\rm{m}}^{\rm{3}}}\), Ni-N is \(2.1182\left( {12} \right) - 2.1498\left( {11} \right)\;\acute{\mathring{\mathrm{A}}} ,\) ∠Ni-N-N is 80.76(4)-82.27(4)°. According to the differential scanning calorimetry data in a range from 295 K to 310 K, there is a thermal anomaly with peaks at T1 = 299.6 K and T2 = 304.7 K. The crystal structural characteristics at 320 K are as follows: space group \(P\overline 3 \,1c,\;a = 9.2491\left( 4 \right)\;\acute{\mathring{\mathrm{A}}} ,\;c = 9.9713\left( 4 \right)\;\acute{\mathring{\mathrm{A}}} ,\;V = 738.72\left( 7 \right)\;{\acute{\mathring{\mathrm{A}}} ^3},\;Z = 2,\;{d_x} = 1.794\;{\rm{g/c}}{{\rm{m}}^3}\), Ni-N is \(2.1302\left( {14} \right)\;\acute{\mathring{\mathrm{A}}} \), ∠N-Ni-N is 80.96(8)°. With increasing temperature from 90 K to 320 K a decrease in the average Mo-O distance from \(1.769\;\acute{\mathring{\mathrm{A}}} \) to \(1.725\;\acute{\mathring{\mathrm{A}}} \) is observed in the structure. The comparative analysis of the interionic N-H…O and C-H…O contacts is carried out. The ex situ powder X-ray diffraction study of the formation process of metal and carbide phases by the [NiEn3]MoO4 thermal decomposition in the presence of LiH in the He atmosphere is performed. At the temperature of 1323 K a Mo2C and MoNi4 phase mixture forms in the first minute. With increasing keeping time the Ni2Mo4Cx phase forms.

About the authors

A. S. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk National Research State University

Email: grom@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

S. P. Khranenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: grom@niic.nsc.ru
Russian Federation, Novosibirsk

V. Yu. Komarov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk National Research State University

Email: grom@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

D. P. Pishchur

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: grom@niic.nsc.ru
Russian Federation, Novosibirsk

R. E. Nikolaev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: grom@niic.nsc.ru
Russian Federation, Novosibirsk

P. S. Buneeva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk National Research State University

Email: grom@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

P. E. Plyusnin’

Novosibirsk National Research State University

Email: grom@niic.nsc.ru
Russian Federation, Novosibirsk

S. A. Gromilov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk National Research State University

Author for correspondence.
Email: grom@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.