Three-dimensional coupled numerical model of creeping flow of viscous fluid


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A three-dimensional coupled numerical model is developed to describe creeping flow in a computational domain that consists of a thick viscous layer overlaid with a thin multilayered viscous sheet. The density of the sheet is assumed to be lower than that of the layer. The model couples the Stokes equations describing the flow in the layer and the Reynolds equations describing the flow in the sheet. We investigate the long-time behavior of the flow in the sheet by using an asymptotic method and derive an ordinary differential equation for the sheet boundary displacements and the velocities at the interface between the sheet and the layer. The Stokes and Reynolds equations are coupled by applying the resulting equation as an internal boundary condition. Numerical implementation is based on a modified finite element method combined with the projection gradient method. The computational domain is discretized into rectangular hexahedra. Piecewise square basis functions are used. The model proposed enables different-type hydrodynamic equations to be coupled without any iterative improvements. As a result, the computational costs are reduced significantly in comparison with available coupled models. Numerical experiments confirm that the three-dimensional coupled model developed is of good accuracy.

Об авторах

V. Pak

Il’ichev Pacific Oceanological Institute, Far East Branch

Автор, ответственный за переписку.
Email: pakvv@poi.dvo.ru
Россия, Vladivostok

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).