Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new efficient method is proposed for inducing magnetism on the surface of a topological insulator through the deposition of a thin film of an isostructural magnetic insulator whose atomic composition is maximally close to that of the topological material. Such a design prevents the formation of a strong interface potential between subsystems. As a result, the topological state freely penetrates into the magnetic region, where it interacts with the exchange field and gets significantly split at the Dirac point. It is shown that the application of this approach to thin films of a tetradymite-like topological insulator allows realizing the quantum anomalous Hall state with a band gap of several tens of meV.

Sobre autores

M. Otrokov

National Research Tomsk State University; St. Petersburg State University

Email: menshikova_t@mail.ru
Rússia, Tomsk, 634050; St. Petersburg, 198504

T. Menshchikova

National Research Tomsk State University

Autor responsável pela correspondência
Email: menshikova_t@mail.ru
Rússia, Tomsk, 634050

I. Rusinov

National Research Tomsk State University; St. Petersburg State University

Email: menshikova_t@mail.ru
Rússia, Tomsk, 634050; St. Petersburg, 198504

M. Vergniory

Department of Applied Physics II, Faculty of Science and Technology

Email: menshikova_t@mail.ru
Espanha, Apdo. 644, Bilbao, 48080

V. Kuznetsov

National Research Tomsk State University

Email: menshikova_t@mail.ru
Rússia, Tomsk, 634050

E. Chulkov

National Research Tomsk State University; St. Petersburg State University; Departamento de Física de Materiales UPV/EHU

Email: menshikova_t@mail.ru
Rússia, Tomsk, 634050; St. Petersburg, 198504; San Sebastián/Donostia, 20080

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2017