Graphite, Graphene, and the Flat Band Superconductivity


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Superconductivity has been observed in bilayer graphene [1, 2]. The main factor that determines the mechanism of the formation of this superconductivity is the “magic angle” of twist of two graphene layers, at which the electronic band structure becomes nearly flat. The specific role played by twist and by the band flattening has been earlier suggested for explanations of the signatures of room-temperature superconductivity observed in the highly oriented pyrolytic graphite (HOPG), when the quasi two-dimensional interfaces between the twisted domains are present. The interface contains the periodic array of misfit dislocations (analogs of the boundaries of the unit cell of the Moiré superlattice in bilayer graphene), which provide the possible source of the flat band. This demonstrates that it is high time for combination of the theoretical and experimental efforts in order to reach the reproducible room-temperature superconductivity in graphite or in similar real or artificial materials.

About the authors

G. E. Volovik

Low Temperature Laboratory; Landau Institute for Theoretical Physics

Author for correspondence.
Email: volovik@boojum.hut.fi
Finland, Aalto, FI-00076; Chernogolovka, >Moscow region, 142432

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Inc.