Rules of correspondence in atomic physics


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Smirnov method of analytic continuation (B.M. Smirnov, Sov. Phys. JETP 20, 345 (1964)) has been justified and developed for atomic physics. It has been shown that the polarizability of alkali atoms α, their van der Waals interaction constant C6, and the oscillator strength of the transition to the first P state f01 are related to the parameter 〈r2〉 and gap in the spectrum \(
\frac{3}{2}\frac{f}{\Delta } \approx \frac{3}{2}\alpha \Delta \approx {\left( {3{C_6}\Delta } \right)^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}}} \approx \left\langle {{r^2}} \right\rangle \)
. The average square of the coordinate of the valence electron 〈r2〉 in the first approximation has a hydrogen dependence \(
{J_1} = \frac{1}{{2{v^2}}}.\)
on the filling factor ν, which is defined in terms of the first ionization potential: xxxxxxxxx

About the authors

A. M. Dyugaev

Landau Institute for Theoretical Physics; Max-Planck-Institut für Physik Komplexer Systeme

Email: lebedeva@issp.ac.ru
Russian Federation, Chernogolovka, Moscow region, 142432; Dresden, D-01187

E. V. Lebedeva

Institute of Solid State Physics

Author for correspondence.
Email: lebedeva@issp.ac.ru
Russian Federation, Chernogolovka, Moscow region, 142432

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Inc.