Specific features of heat transfer at the stagnation point of an impact axisymmetric jet at low Reynolds numbers


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The average and pulsating thermal characteristics at the stagnation point of a plate at inflow of an impact axisymmetric air jet have been studied. The influence of the Reynolds number (100 < Re < 12000) on heat transfer has been investigated for a jet flowing from a long tube (diameter d = 5 mm, relative length h/d = 200) with the output located at a distance h/d = 20 from the obstacle. The measurements have been carried out using a heat-flow sensor with high spatial and temporal resolutions. A nonmonotonic change in heat transfer having a maximum is found in the range Re < 4000 (in contrast to the known monotonic increase in heat transfer). A significant increase (200–600%) in the Nusselt number is observed for outflow from a tube in comparison with jet outflow from a nozzle. At Re > 4000, the difference in heat transfers for two cases of jet formation (from a tube and a nozzle) decreases asymptotically.

作者简介

V. Lemanov

Kutateladze Institute of Thermophysics, Siberian Branch

编辑信件的主要联系方式.
Email: lemanov@itp.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

V. Terekhov

Kutateladze Institute of Thermophysics, Siberian Branch

Email: lemanov@itp.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016