Геодинамические условия формирования современной структуры трансформного разлома Эндрю-Бейн (Юго-Запад Индийского океана): экспериментальное моделирование
- Авторы: Боголюбский В.А.1,2,3, Дубинин Е.П.1,2, Сущевская Н.М.4, Грохольский А.Л.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова, Музей землеведения
- Московский государственный университет имени М.В. Ломоносова, геологический факультет
- Геологический институт РАН
- Институт геохимии и аналитической химии Российской академии наук (ГЕОХИ РАН)
- Выпуск: № 4 (2025)
- Страницы: 63-82
- Раздел: Статьи
- URL: https://journals.rcsi.science/0016-853X/article/view/308923
- DOI: https://doi.org/10.31857/S0016853X25040046
- EDN: https://elibrary.ru/sofuti
- ID: 308923
Цитировать
Аннотация
Трансформный разлом Эндрю-Бейн разделяет две части Юго-Западного Индийского хребта (Индийский океан), различные по своему строению и эволюции. Он выделяется среди других трансформных разломов сложной структурой, в которую входят несколько трогов и области косого растяжения. Для выявления геодинамических условий формирования современного структурного плана трансформного разлома Эндрю-Бейн было проведено экспериментальное моделирование, при котором воспроизводилось формирование современной структуры трансформного разлома. В ходе экспериментов получены плоскости сдвига трансформной зоны, которые изменяли свое положение, а также области перекрытия сдвиговых плоскостей и осей растяжения, соответствующие неактивной в наше время области косого растяжения трансформного разлома. Основными факторами, определившими формирование структурного плана разломной зоны, являются (i) наклон прилегающих спрединговых сегментов относительно направления растяжения и (ii) изначально заданная линзовидная форма трансформной зоны. Формирование линзовидной формы было воспроизведено в отдельной экспериментальной серии. Предполагается, что термическое влияние плюма Марион в условиях транстенсии могло привести к локальному сжатию в районе северо-восточного борта трансформного разлома. Данные условия значительно отличаются от других подобных примеров, где формирование сложного структурного плана происходило под влиянием кинематических перестроек границ литосферных плит без существенного воздействия термических аномалий. Совместное влияние этих двух факторов и, как следствие, образование линзовидной формы для трансформного разлома Эндрю-Бейн было возможно в период 52‒40 млн лет назад при изменении направления растяжения на Юго-Западном Индийском хребте, что совпало с импульсом магматической активности плюма Марион.
Об авторах
В. А. Боголюбский
Московский государственный университет имени М.В. Ломоносова, Музей землеведения; Московский государственный университет имени М.В. Ломоносова, геологический факультет; Геологический институт РАН
Email: bogolubskiyv@gmail.com
д. 1, Ленинские горы, 119991 Москва, Россия; д. 1, Ленинские горы, 119991 Москва, Россия; д. 7, Пыжевский пер., 119017 Москва, Россия
Е. П. Дубинин
Московский государственный университет имени М.В. Ломоносова, Музей землеведения; Московский государственный университет имени М.В. Ломоносова, геологический факультет
Email: bogolubskiyv@gmail.com
д. 1, Ленинские горы, 119991 Москва, Россия; д. 1, Ленинские горы, 119991 Москва, Россия
Н. М. Сущевская
Институт геохимии и аналитической химии Российской академии наук (ГЕОХИ РАН)
Email: bogolubskiyv@gmail.com
д. 19, ул. Косыгина, 119991 Москва, Россия
А. Л. Грохольский
Московский государственный университет имени М.В. Ломоносова, Музей землеведения
Автор, ответственный за переписку.
Email: bogolubskiyv@gmail.com
д. 1, Ленинские горы, 119991 Москва, Россия
Список литературы
- Боголюбский В.А., Дубинин Е.П., Грохольский А.Л. Трансформные и нетрансформные смещения западной части Юго-Западного Индийского хребта (экспериментальное моделирование) // Геотектоника. 2025. № 1. С. 104‒124. doi: 10.31857/S0016853X25010068.
- Добролюбова К.О. Линзовидные расширения в активной части трансформных разломов: морфология, геодинамика, эволюция. ‒ В сб.: Тектоника и геодинамика Земной коры и мантии: фундаментальные проблемы-2023. ‒ Мат-лы LIV Тектонического совещания. ‒ М.: ГЕОС, 2023. Т. 1. С. 144–148.
- Добролюбова К.О. Эволюция, геодинамика и морфология линзовидных расширений в активной части трансформных разломов: сравнительный анализ и кинематическая модель // Геотектоника. 2025. № 2. С. 32–53. doi: 10.31857/S0016853X25020021.
- Дубинин Е.П. Геодинамические обстановки образования микроконтинентов, погруженных плато и невулканических островов в пределах континентальных окраин // Океанология. 2018. Т. 58. № 3. С. 463–475. doi: 10.7868/S0030157418030115.
- Дубинин Е.П., Рыжова Д.А., Чупахина А.И., Грохольский А.Л., Булычев А.А. Строение литосферы и условия формирования подводных поднятий приантарктического сектора Южной Атлантики на основе плотностного и физического моделирования // Геотектоника. 2023. № 4. С. 32–55. doi: 10.31857/S0016853X23040057.
- Дубинин Е.П., Чупахина А.И., Грохольский А.Л. Физическое моделирование условий формирования подводных поднятий Метеор и Айлос Оркадас (Южная Атлантика) // Океанология. 2023. Т. 63. № 3. С. 482–491. doi: 10.31857/S0030157423030048.
- Пейве А.А. Аккреция океанической коры в условиях косого спрединга // Геотектоника. 2009. № 2. С. 5–19.
- Пейве А.А., Сколотнев С.Г. Особенности составов базальтов западной части разлома Эндрю-Бейн Юго-Западно-Индийского хребта // ДАН. 2017. Т. 477. № 4. С. 441–447. doi: 10.7868/S0869565217340126.
- Пейве А.А., Сколотнев С.Г., Лиджи М., Турко Н.Н., Бонатти Э., Колодяжный С.Ю., Чамов Н.П., Цуканов Н.В., Барамыков Ю.Е., Ескин А.Е., Гриндли Н., Склейтер Д., Брунелли Д., Перцев А.Н., Чиприани А., Бортолуци Д., Меркюри Р., Паганелли Е., Мучини Ф., Такеучи Ч., Зафанини Ф., Добролюбова К.О. Исследования зоны трансформного разлома Эндрю- Бейн (Африкано-Антарктический регион) // ДАН. 2007. Т. 416. № 1. С. 477–480.
- Пущаровский Ю.М., Пейве А.А., Разницин Ю.Н., Базилевская Е.С. Разломные зоны Центральной Атлантики. ‒ Под ред. Ю. М. Пущаровского. ‒ М.: ГЕОС, 1995. 160 с. (Тр. ГИН РАН. Вып. 495).
- Сколотнев С.Г., Санфилиппо А., Пейве А.А., Мучини Ф., Соколов С.Ю., Сани К., Добролюбова К.О., Феррандо К., Чамов Н.П., Перцев А.Н., Грязнова А.С., Шолухов К.Н., Бич А.С. Новые данные по строению мегатрансформной системы Долдрамс (Центральная Атлантика) // ДАН. Науки о Земле. 2020. Т. 491. № 1. С. 29–32. doi: 10.31857/S2686739720030184.
- Соколов С.Ю. Тектоника и геодинамика Экваториального сегмента Атлантики. ‒ Отв. ред. К.Е. Дегтярев. ‒ М.: Научный мир, 2018. 269 с. (Тр. ГИН РАН. Вып. 618).
- Соколов С.Ю., Добролюбова К.О., Турко Н.Н. Связь поверхностных геолого-геофизических характеристик с глубинным строением Срединно-Атлантического хребта по данным сейсмотомографии // Геотектоника. 2022. № 2. С. 3–20. doi: 10.31857/S0016853X22020060.
- Соколов С.Ю., Зарайская Ю.А., Мазарович А.О., Ефимов В.Н., Соколов Н С. Пространственная неустойчивость рифта в полиразломной трансформной системе Сан-Паулу, Атлантический океан // Геотектоника. 2016. № 3. С. 3–18. doi: 10.7868/S0016853X16030115.
- Сущевская Н.М., Щербаков В.Д., Пейве А.А., Дубинин Е.П., Беляцкий Б.В., Жилкина А.В. Формирование океанической коры в пределах района разломной зоны Эндрю-Бейн Юго-Западного Индийского хребта (по данным петролого-геохимического изучения) // Геохимия. 2024. Т. 69. № 1. С. 3–20. doi: 10.31857/S0016752524010016.
- Шеменда А.И. Критерии подобия при механическом моделировании тектонических процессов // Геология и геофизика. 1983. № 10. С. 10–19.
- Armienti P., Longo P. Three-dimensional representation of geochemical data from a multidimensional compositional space // Int. J. Geosci. 2011. No. 2. P. 231‒239. doi: 10.4236/ijg.2011.23025.
- Bernard A., Munchy M., Rotstein Y., Sauter D. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data // Geophys. J. Int. 2005. Vol. 162. P. 765–778. doi: 10.1111/j.1365-246X.2005.02672.x.
- Bonatti E., Brunelli D., Buck W.R., Cipriani A., Fabretti P., Ferrante V., Gasperini L., Ligi M. Flexural uplift of a lithospheric slab near the Vema transform (Central Atlantic): Timing and mechanisms // Earth and Planet. Sci. Lett. 2005. Vol. 240. Is. 3–4. P. 642–655. doi: 10.1016/j.epsl.2005.10.010.
- Bonatti E., Ligi M., Gasperini L., Peyve A., Raznitsin Y., Chen Y.J. Transform migration and vertical tectonics at the Romanche fracture zone, equatorial Atlantic // J. Geophys. Res. 1994. Vol. 99. No. B11. P. 21779–21802. doi: 10.1029/94JB01178.
- Bonatti E., Seyler M., Sushevskaya N. A сold suboceanic mantle belt at the Earth’s Equator // Science. 1993. Vol. 261. P. 315–320. doi: 10.1126/science.261.5119.315.
- Breton T., François N., Pichat S., Moinea B.,. Moreirad M., Rose-Kogaa E.F., Auclaira D., Bosqa C., Wavranta L.-M. Geochemical heterogeneities within the Crozet hotspot // Earth and Planet. Sci. Lett. 2013. Vol. 376. P. 126–136. doi: 10.1016/j.epsl.2013.06.020.
- Cande S. C., Patriat P. The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic // Geophys. J. Int. 2015. Vol. 200. Is. 1. P. 227–243. doi: 10.1093/gji/ggu392.
- Davis J.K. The breakup of East Gondwana: insights from plate modeling, basin analysis, and numerical experiments. ‒ PhD Thesis. Univ. of Texas at Austin, Austin, USA. 2017. 166 p.
- Debayle E., Lévêque J.J. Upper mantle heterogeneities in the Indian Ocean from waveform inversion // Geophys. Res. Lett. 1997. Vol. 24. No. 3. P. 245–248. doi: 10.1029/96gl03954.
- DeMets C., Merkouriev S., Sauter D. High-resolution estimates of Southwest Indian Ridge plate motions, 20 Ma to present // Geophys. J. Int. 2015. Vol. 203. P. 1495–1527. doi: 10.1093/gji/ggv366.
- DeMets C., Merkouriev S., Sauter D. High resolution reconstructions of the Southwest Indian Ridge, 52 Ma to present: implications for the breakup and absolute motion of the Africa plate // Geophys. J. Int. 2021. Vol. 226. Is. 3. P. 1461–1497. doi: 10.1093/gji/ggab107.
- Gale A., Langmuir C.H., Coolleen A., Dalton C.A. The Global systematics of ocean ridge basalts and their origin // J. Petrol. 2014. Vol. 55. Iss. 6. P. 1051–1082. doi: 10.1093/petrology/egu017.
- Georgen J.E., Lin J. Plume-transform interactions at ultra-slow spreading ridges: Implications for the Southwest Indian Ridge // Geochem., Geophys., Geosyst. (G3). 2003. Vol. 4. No. 9. Art. 9106. doi: 10.1029/2003GC000542.
- Georgen J.E., Lin J., Dick H.J.B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets // Earth and Planet. Sci. Lett. 2001. Vol. 187. P. 283‒300. doi: 10.1016/S0012-821X(01)00293-X.
- Hoernle K., Schwindrofska A., Werner R., van den Bogaard P., Hauff P., Uenzelmann-Neben G., Garbe-Schönberg D. Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas-Falkland Fracture Zone // Geology. 2016. Vol. 44. No. 4. P. 263–266. doi: 10.1130/G37582.1.
- Hofmann A.W. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. ‒ In: Treatise on Geochemistry. ‒ NY, Elsevier. 2003. Vol. 3. P. 61–101. doi: 10.1016/B0-08-043751-6/02123-X.
- Horner-Johnson B.C., Gordon R.G., Argus D.F. Plate kinematic evidence for the existence of a distinct plate between the Nubian and Somalian plates along the Southwest Indian Ridge // J. Geophys. Res. 2007. Vol. 112. Is. B5. B05418. doi: 10.1029/2006JB004519.
- Lemaux J. (II), Gordon R.G., Royer J.-Y. Location of the Nubia-Somalia boundary along the Southwest Indian Ridge // Geology. 2002. Vol. 30. No. 4. P. 339–342. doi: 10.1130/0091-7613(2002)030<0339:LOTNSB>2.0.CO;2.
- Ligi M., Bonatti E., Gasperini L., Poliakov A.N.B. Oceanic broad multi-fault transform plate boundaries // Geology. 2002. Vol. 30. No. 1. P. 11–14. doi: 10.1130/0091-7613(2002)030<0011:OBMTPB>2.0.CO;2.
- Mahoney J., Le Roex A.P., Peng Z., Fisher R.L., Hatland J.H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb Mid-Ocean Ridge basalt: Isotope systematics of the Central Southwest Indian Ridge (17°‒50°E) // J. Geophys. Res. 1992. Vol. 97. No. B13. P. 19771–19790. doi: 10.1029/92JB01424.
- Meyer B., Saltus R., Chulliat A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Vers. 3. ‒ NOAA National Centers for Environmental Information. Available from: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.geophysical_models:EMAG2_V3 (Last Accessed 01.10.2022). doi: 10.7289/V5H70CVX.
- Royer J.-Y., Patriat P., Bergh H.W., Scotese C.R. Evolution of the Southwest Indian Ridge from the Late Cretaceous (anomaly 34) to the Middle Eocene (anomaly 20) // Tectonophysics. 1988. Vol. 155. Is. 1–4. P. 235‒260. doi: 10.1016/0040-1951(88)90268-5.
- Ryan W.B.F., Carbotte S.M., Coplan J., O’Hara S., Melkonian A., Arko R., Weissel R.A., Ferrini V., Goodwillie A., Nitsche F., Bonczkowski J., Zemsky R. Global Multi-Resolution Topography (GMRT) synthesis data set // Geochem. Geophys. Geosyst. (G3). 2009. Vol. 10. Q03014. doi: 10.1029/2008GC002332.
- Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure // Science. 2014. Vol. 346. No. 6205. P. 65–67. doi: 10.1126/science.1258213.
- Sauter D., Cannat M. The ultraslow spreading Southwest Indian Ridge. ‒ In: Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. ‒ Ed. by P.A. Rona, C.W. Devey, J. Dyment, B.J. Murton (Geophys. Monogr. Ser. Vol. 188., Washington, DC, USA, 2010.). P. 153–173. doi: 10.1029/2008GM00843.
- Sclater J.G., Grindlay N.R., Madsen J.A., Rommevaux-Jestin C. Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean // Geochem., Geophys., Geosyst. (G3). 2005. Vol. 6. No. 9. Q09K10. doi: 10.1029/2005GC000951.
- Shemenda A.I., Grokholsky A.L. A formation and evolution of overlapping spreading centers (constrained on the basis of physical modelling) // Tectonophysics. 1991. Vol. 199. P. 389–404. doi: 10.1016/0040-1951(91)90180-Z.
- Shemenda A.I., Grocholsky A.L. Physical modeling of slow seafloor spreading // J. Geophys. Res. 1994. Vol. 99. P. 9137–9153. doi: 10.1029/93JB02995/.
- Takeuchi C. S. Transform faults and lithospheric structure: Insights from numerical models and shipboard and geodetic observations. ‒ PhD Thesis. Univ. of California, San Diego, USA. 2012. 156 p.
- Takeuchi C.S., Sclater J.G., Grindlay N.R., Madsen J.A., Rommevaux-Jestin C. Segment-scale and intra-segment lithospheric thickness and melt variations near the Andrew-Bain mega-transform fault and Marion hot-spot: Southwest Indian Ridge, 25.5°E–35°E // Geochem., Geophys. Geosyst. (G3). 2010. Vol. 11. No. 7. Q07012. doi: 10.1029/2010GC003054.
- Thompson J.O., Moulin M., Aslanian D., de Clarens P., Guillocheau F. New starting point for the Indian Ocean: Second phase of breakup for Gondwana // Earth-Sci. Rev. 2019. Vol. 191. P. 26–56. doi: 10.1016/j.earscirev.2019.01.01.
- Yu X., Dick H., Li X.H., You C.F., Hui D.Y., Hang H. The geotectonic features of the Southwest Indian Ridge and its geodynamic implications // Chin. J. Geophys. 2020. Vol. 63. No. 10. P. 3585‒3603. doi: 10.6038/cjg2020N0230.
- Zhang F., Lin J., Zhou Z., Yang H., Morgan J.P. Mechanism of progressive broad deformation from oceanic transform valley to off-transform faulting and rifting // The Innovation. 2022. Vol. 3. No. 1. 100193. Doi: https://doi.org/10.1016/j.xinn.2021.100193.
- Zhang T., Lin J., Gao J.Y. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts // Sci. China Earth Sci. 2011. Vol. 54. P. 1177–1188. doi: 10.1007/s11430-011-4219-9.
- Zhou H., Dick H.J.B. Thin crust as evidence for depleted mantle supporting the Marion Rise // Nature. 2013. Vol. 494. Art. 7436. P. 195–200. doi: 10.1038/nature11842.
- Agisoft Metashape. URL: https://www.agisoft.com/. Accessed January, 2025.
Дополнительные файлы
