Tectonic position and seismotectonic manifestations of the March 28, 2025 Mandalay earthquake MW = 7.7 (Myanmar)
- Autores: Zelenina E.A.1, Trifonova V.G.1, Sokolova S.Y.1, Bachmanova D.M.1
-
Afiliações:
- Geological Institute RAS
- Edição: Nº 5 (2025)
- Páginas: 3-22
- Seção: Articles
- URL: https://journals.rcsi.science/0016-853X/article/view/353461
- DOI: https://doi.org/10.7868/S3034497225050016
- ID: 353461
Citar
Resumo
The March 28, 2025 Mandalay Earthquake, with a magnitude Mw = 7.7 and its epicenter near the city of Mandalay, occurred within the zone of the major N‒S trending active right-lateral Sagaing fault. The earthquake generated a seismic rupture zone that extended mainly southward from the epicenter along this fault. Using radar interferometry and sub-pixel correlation of satellite imagery, the authors determined the parameters of the rupture zone. Its length is ~ 460 km, with right-lateral displacement reaching the maximum observed amplitude of 5.8 m. Given the hypocenter depth of 10 km, the seismic ruptures can be considered the surface expression of the earthquake source. The Sagaing Fault is associated with the ophiolite belt of Myanmar, which represents relicts of the Meso-Tethys paleo-ocean, displaced by Cenozoic tectonic movements. In northern Myanmar, where the Mandalay earthquake occurred, the ophiolite belt functions as the magmatic component of the submeridional northern segment of the Sunda island arc, beneath which the Indian Plate is subducting in a north-northeast direction. While the subduction surface is gently dipping near the front of the Sunda Plate, it experiences steep subduction further to the east. The Sagaing Fault lies above the eastern flank of the region of steep Indian Plate subduction. Beneath the region lies a mantle plume that reduces lithospheric thickness and causes softening of the lower crust. We suggest that the increased extent of the rupture zone of the Mandalay earthquake is due to the plasticity of the ophiolitic substrate, which facilitates rock slip, while the shallow depth of the hypocenter is related to the softening of the lower crust and upper mantle under the influence of the mantle plume. The significance of these factors is confirmed by comparing the Mandalay earthquake with the strongest earthquakes in Eastern Anatolia over the past 80 years, which occurred under similar tectonic conditions. These factors are supposed to be taken into account when assessing seismic impacts of major earthquakes
Sobre autores
E. Zelenina
Geological Institute RAS
Email: trifonov@ginras.ru
bld. 7, Pyzhevsky per., 119017 Moscow, Russia
V. Trifonova
Geological Institute RAS
Email: trifonov@ginras.ru
bld. 7, Pyzhevsky per., 119017 Moscow, Russia
S. Sokolova
Geological Institute RAS
Email: trifonov@ginras.ru
bld. 7, Pyzhevsky per., 119017 Moscow, Russia
D. Bachmanova
Geological Institute RAS
Autor responsável pela correspondência
Email: trifonov@ginras.ru
bld. 7, Pyzhevsky per., 119017 Moscow, Russia
Bibliografia
- Белов А.А., Гатинский Ю.Г., Моссаковский А.А. Индосиниды Евразии // Геотектоника. 1985. № 6. С. 21–42.
- Буртман В.С. Тянь-Шань и Высокая Азия: Тектоника и геодинамика в палеозое. — Под ред. А.А. Моссаковского. — М.: Геос, 2006. 215 с. (Тр. ГИН РАН. Вып. 570).
- Иванова Т.П., Трифонов В.Г. Новые аспекты соотношений тектоники и сейсмичности // ДАН. 1993. Т. 331. № 5. С. 587–589.
- Михайлов В.О., Бабаянц И.П., Волкова М.С., Тимошкина Е.П., Смирнов В.Б., Тихоцкий С.А. Землетрясения в Турции 06.02.2023: Модель поверхности разрыва по данным спутниковой радарной интерферометрии // ДАН. Науки о Земле. 2023. Т. 511. № 1. С. 71–77. doi: 10.31857/S2686739723600625
- Соколов С.Ю. Состояние геодинамической подвижности в мантии по данным сейсмотомографии и отношению скоростей Р и S волн // Вест. КРАУНЦ. Науки о Земле. 2014. Т. 24. № 2. С. 55‒67.
- Соколов С.Ю., Трифонов В.Г. Дуговые структуры и строение верхней мантии Центральной и Юго-Восточной Азии по данным сейсмотомографии и сейсмичности // Геотектоника. 2024. № 1. С. 28–47. doi: 10.31857/S0016853X24010023
- Трифонов В.Г., Соколов С.Ю. Подлитосферные течения в мантии // Геотектоника. 2017. № 6. С. 3–17. doi: 10.7868/S0016853X1706008X
- Трифонов В.Г., Соколов С.Ю., Соколов С.А., Хессами Х. Мезозойско‒кайнозойская структура Черноморско-Кавказско-Каспийского региона и ее соотношение со строением верхней мантии // Геотектоника. 2020. № 3. С. 55–81. doi: 10.31857/S0016853X20030108
- Трихунков Я.И., Ҫelik H., Ломов В.С., Трифонов В.Г., Бачманов Д.М., Karginoglu Y., Соколов С.Ю. Геологическая позиция, структурные проявления Эльбистанского землетрясения и тектоническое сравнение двух сильнейших сейсмических событий 06.02.2023 г. в Восточной Турции // Геотектоника. 2024. № 3. C. 108‒126. doi: 10.31857/S0016853X24030054
- Хаин В.Е. Тектоника континентов и океанов. ‒ М.: Научный мир, 2001. 606 с.
- Челик Х., Трихунков Я.И., Соколов С.А., Трифонов В.Г., Зеленин Е.А., Каргиноглу Ю., Юшин К.И., Ломов В.С., Бачманов Д.М. Тектонические аспекты Восточно-Анатолийского землетрясения 06.02.2023 г. в Турции // Физика Земли. 2023. № 6. С. 5–23. doi: 10.31857/S0002333723060054
- Acharyya S.K. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture // J. Asian Earth Sci. 2007. Vol. 29. No. 2–3. P. 229‒242. doi: 10.1016/j.jseaes.2006.03.003
- Aitchison J.C., Davis A.M., Abrajevitch A.V., Ali J.R., Badengzhu, Liu J., Luo H., McDermid I.R.C., Ziabrev S.V. Stratigraphic and sedimentological constraints on the age and tectonic evolution of the Neotethys ophiolites along the Yarlung–Tsangpo suture zone, Tibet. ‒ In: Ophiolites in Earth history. ‒ Ed. by Y. Dilek, P.T. Robinson, (Geol. Soc. London. Spec. Publ. 2003. Vol. 218), 147–164. doi: 10.1144/GSL.SP.2003.218.01.09
- Allen C.R., Gillespie A.R., Han Yu., Sieh K.E., Zhang B., Zhu Ch. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard // GSA Bull. 1984. Vol. 95. No. 6. P. 686–700. doi: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2
- Amaru M. Global travel time tomography with 3D reference models. ‒ PhD Thesis, (Geol. Departm., Utrecht Univ., Germany. 2007), 174 p. (In German).
- ARIA Advanced Rapid Imaging and Analysis, URL: https://aria.jpl.nasa.gov/ (Accessed June 16, 2025).
- Barber A.J., Khin Zaw, Crow M.J. The pre-Cenozoic tectonic evolution of Myanmar. ‒ In: Myanmar: Geology, Resources and Tectonics. ‒ Ed. by A.J. Barber, Khin Zao, M.J. Crow (Geol. Soc., London. Memoirs. 2017. Vol. 48). P. 687–712. Doi: https://doi.org/10.1144/M48.31
- Barka A.A. The North Anatolian fault zone // Ann. Tectonicae. 1992 Vol. 6. P. 164–195.
- Becker T.W., Boschi L. A comparison of tomographic and geodynamic mantle models // Geochem., Geophys., Geosyst. (G3). 2002. Vol. 3. P. 1‒48. Doi: 10.129/2001GC000168
- Bertrand G., Rangin C., Maury R.C., Htun H.M., Bellon H., Guillaud J.P. Les basaltes de Singu (Myanmar): Nouvelles contraintes sur le taux de décrochement récent de la faille de Sagaing // Comptes Rendus de l’Académie des Science (Ser. IIA-Earth and Planet. Sci.). 1998. Vol. 327. P. 479–484.
- Bilham R., England P. Plateau ‘pop-up’ in the great 1897 Assam earthquake // Nature. 2001. Vol. 410. P. 806–809.
- Bradley K., Hubbard J. Remarkable video captures fault slip in the Myanmar earthquake. Earthquake Insights. https://doi.org/10.62481/01cd039c html (Accessed June 16, 2025).
- Burchfiel B.C., Chen Z. Tectonics of the southeastern Tibetan Plateau and its adjacent foreland. (GSA, Boulder, USA. GSA Memoir. 2012. Vol. 210), 225 p.
- Ҫetin K.Ö., Bray J.D., Frost J.D., Hortacsu A., Miranda E., Moss R.E.S., Stewart J.P. February 6, 2023 Kahramanmaras, Türkiye Earthquakes. ‒ Report on Geoscience and Engineering Impacts. GEER Association Report 082 edn., 6 May 2023. 10.18118/G6PM34' target='_blank'>https://doi.org/doi: 10.18118/G6PM34
- Earthquake in Mandalay, Myanmar on 28 March, 2025. ‒ Emergency Obs. Request Information, https://sentinel-asia.org/EO/2025/article20250328MM.html (Accessed June 16, 2025).
- Gahalaut V.K., Kundu B., Laishram S.S., Catherine J., Kumar A., Singh M.D., Narsaiah M. Aseismic plate boundary in the Indo-Burmese wedge, northwest Sunda Arc // Geology. 2013. Vol. 41. No. 2. P. 235–238. doi: 10.1130/G33771.1
- Genrich J.F., Bock Y., Mccaffrey R., Prawirodirdjo L. Distribution of slip at the northern Sumatran fault system // J. Geophys. Res.: Solid Earth. 2000. Vol. 105. P. 28327–28341. doi: 10.1029/2000JB900158
- Geological Map of the People’s Republic of China. ‒ Scale 1:2 500 000. ‒ Ed. by Huang Chongke, (Xi’an Mapping & Printing Comp. of ARSC. China Geol. Surv. 2004).
- Geological map of Myanmar. ‒ Scale 1:2 250 000. (Myanmar Geosci. Soc., Yangon, Myanmar, 2014).
- Goldstein R.M., Werner C. Radar interferogram filtering for geophysical applications // Geophys. Res. Lett. 1998. Vol. 25. No. 21. P. 4035–4038. doi: 10.1029/1998GL900033
- Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations // J. Asian Earth Sci. 2002. Vol. 20. P. 353–431. doi: 10.1016/S1367-9120(01)00069-4
- Hall R., Spakman W. Mantle structure and tectonic history of SE Asia // Tectonophysics. 2015. Vol. 658. P. 14–45. doi: 10.1016/j.tecto.2015.07.003
- Hla Htay, Khin Zaw, Than Than Oo. The mafic–ultramafic (ophiolitic) rocks of Myanmar. ‒ In: Myanmar: Geology, Resources and Tectonics. ‒ Ed. by A.J. Barber, Khin Zao, M.J. Crow (Geol. Soc. London. Memoirs. 2017. Vol. 48). P. 117–141. doi: 10.1144/M48.6
- Hutchison C.S. Ophiolite in Southeast Asia // GSA Bull. 1975. Vol. 86. P. 797–806.
- International Geological Map of Asia. ‒ Scale 1:5 000 000. ‒ Coordinator Ren Jishun, (Commission for the Geol. Map of the World, Inst. Geol., Chinese Acad. Geol. Sci., 2013).
- International Seismological Centre. ‒ ISC-GEM Earthquake Catalogue (2024. Vers. 11). URL: https://doi.org/10.31905/d808b825 (Accessed June 16, 2025).
- Kahramanmaraş –Gaziantep Turkey M = 7.7 earthquake, February 6, 2023 (04:17 GMT+03:00). ‒ Boğazici Univ. Kandilli Observatory. Sci. Rep. 2023. 41 p. URL: https://eqe.bogazici.edu.tr/sites/eqe.boun.edu.tr/files/kahramanmaras- gaziantep_earthquake_06-02-2023_04.17-bogazici_university_earthquake_engineering_department_v6.pdf (Accessed June 16, 2025).
- Lacassin R., Replumaz A., Leloup P.H. Hairpin river loops and slip-sense inversion on southeast Asian strike-slip faults // Geology. 1998. Vol. 26. P. 703–706.
- Le Dain A.Y., Tapponnier P., Molnar P. Active faulting and tectonics of Burma and surrounding regions // J. Geophys. Res.: Solid Earth. 1984. Vol. 89. P. 453–472. doi: 10.1029/JB089iB01p00453
- Lei W., Shi G., Santosh M., Ng Y., Liu Y., Wang J., Xie G., Ju Y. Trace element features of hydrothermal and inherited igneous zircon grains in a mantle wedge environment: A case study from Myanmar jadeitite // Lithos. 2016. Vol. 266–267. P. 16–27. doi: 10.1016/j.lithos.2016.09.031
- Lei Y., Gardner A., Agram P. Autonomous repeat image feature tracking (auto-RIFT) and its application for tracking ice displacement // Remote Sensing. 2021. Vol. 13. No. 4. 749. doi: 10.3390/rs13040749
- Liu C.-Z., Chung S.-L., Wu F.-Y., Zhang C., Xu Y., Wang J.-G., Chen Y., Guo S. Tethyan suturing in Southeast Asia: Zircon U–Pb and Hf–O isotopic constraints from Myanmar ophiolites // Geology. 2016. Vol. 44. P. 311–314. doi: 10.1130/G37342.1
- Malpas J., Zhou M.-F., Robinson P.T., Reynolds P.H. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung–Zangbo ophiolites, Southern Tibet. ‒ In: Ophiolites in Earth history. ‒ Ed. by Y. Dilek, P.T. Robinson, (Geol. Soc. London. Spec. Publ. 2003. Vol. 218), pp. 191–206.
- Maurin T., Masson F., Rangin C., Min U.T., Collard P. First global positioning system results in northern Myanmar: constant and localized slip rate along the Sagaing Fault // Geology. 2010. Vol. 38. P. 591–594. doi: 10.1130/G30872.1
- Maurin T., Rangin C. Structure and kinematics of the Indo-Burmese Wedge: Recent and fast growth of the outer wedge // Tectonics. 2009. Vol. 28. TC2010. doi: 10.1029/2008TC002276
- Mitchell A., Chung S.L., Thura Oo., Lin T.H., Hung C.H. Zircon U–Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean? // J. Asian Earth Sci. 2012. Vol. 56. P. 1–23. doi: 10.1016/j.jseaes.2012.04.019
- Molnar P., Stock J.M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics // Tectonics. 2009. Vol. 28. TC3001. doi: 10.1029/2008TC002271
- Myanmar: Geology, Resources and Tectonics. ‒ Ed.by A.J. Barber, Khin Zao, M.J. Crow, (Geol. Soc., London. Memoirs. 2017. Vol. 48), 764 p.
- Oryan B., Betka P.M., Steckler M.S., Nooner S.L., Lindsey E.O., Mondal D., Mathews A.M., Akhter S.H., Singha S., Than Oo. New GNSS and geological data from the Indo-Burman subduction zone indicate active convergence on both a locked megathrust and the Kabaw Fault // J. Geophys. Res.: Solid Earth. 2023. Vol. 128. e2022JB025550. doi: 10.1029/2022JB025550.
- Pedersen R.B., Searle M.P., Carter A., Bandopadhyay P.C. U–Pb zircon age of the Andaman ophiolite: implications for the beginning of subduction beneath the Andaman–Sumatra arc // J. Geol. Soc., London. 2010. Vol. 167. P. 1105–1112. doi: 10.1144/0016-76492009-151
- Raju K.A., Ramprasad T., Rao P.S., Ramalingeswara Rao B., Varghese J. New insights into the tectonic evolution of the Andaman Basin, northeast Indian Ocean // Earth and Planet. Sci. Lett. 2004. Vol. 221. P. 145–162. doi: 10.1016/S0012-821X(04)00075-5
- Ray J.S., Pande K., Bhutani R. 40Ar/39Ar geochronology of subaerial lava flows of Barren Island volcano and the deep crust beneath the Andaman Island Arc, Burma Microplate // Bull. Volcanol. 2015. Vol. 77. 57. doi: 10.1007/s00445-015-0944-9
- Replumaz A., Lacassin R., Tapponnier P., Leloup P.H. Large river offsets and Plio-Quaternary dextral slip rate on the Red River Fault (Yunnan, China) // J. Geophys. Res. Vol. 106 (B1). P. 819–836. doi: 10.1029/2000JB900135
- Schoenbohm L.M., Burchfiel B.C., Liangzhong C., Jiyun Y. Miocene to present activity along the Red River Fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow // GSA Bull. 2006. Vol. 118. P. 672–688. doi: 10.1130/B25816.1
- Searle M.P., Morley C.K., Waters D.J., Gardiner N.J., Kyi Htun U., Than Than Nu, Robb L.J. Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar). ‒ In: Myanmar: Geology, Resources and Tectonics. ‒ Ed. by A.J. Barber, Khin Zao, M.J. Crow, (Geol. Soc., London. Memoirs. 2017. Vol. 48). P. 261–294. doi: 10.1144/M48.12
- Sengör A.M.C. The Cimmeride orogenic system and the tectonics of Eurasia. ‒ GSA, Boulder, USA, GSA Spec. Publ. 1984. Vol. 195. 82 p.
- Sloan R.A., Elliott J.R., Searle M.P., Morley C.K. Active tectonics of Myanmar and the Andaman Sea. ‒ In: Myanmar: Geology, Resources and Tectonics. ‒ Ed. by A.J. Barber, Khin Zao, M.J. Crow (Geol. Soc., London. Memoirs. 2017. Vol. 48). P. 19–52. doi: 10.1144/M48.2
- Socquet A., Vigni C., Chamot-Rooke N., Simons W., Rangin C., Ambrosius B. India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS // J. Geophys. Res.: Solid Earth. 2006. Vol. 111. B05406. doi: 10.1029/2005JB003877
- Steckler M.S., Mondal D.R., Akhter S.H., Seeber L., Feng L., Gale J., Hill E.M., Howe M. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges // Nature Geoscience. 2016. Vol. 9. P. 615–618. doi: 10.1038/NGEO2760
- Su W.J., Dziewonski A.M. Simultaneous inversion for 3D variations in shear and bulk velocity in the mantle // Physics of the Earth and Planetary Interiors. 1997. Vol. 100. P. 135‒156. doi: 10.1016/S0031-9201(96)03236-0
- Todrani A., Speranza F., D’Agostino N., Zhang B. Post-50 Ma evolution of India‒Asia collision zone from paleomagnetic and GPS data: Greater India indentation to eastward Tibet flow // Geophys. Res. Lett. 2021. Vol. 49. e2021GL096623. doi: 10.1029/2021GL096623
- Torres R., Snoeij P., Geudtner D., Bibby D., Davidson M., Attema E., Potin P., Rommen B., Floury N., Brown N., Navas Trave I., Deghaye P., Duesmann B., Rosich B., Miranda N., Bruno C., L’Abbate M., Croci R., Pietropaolo A., Huchler M., Rostan F. GMES Sentinel-1 mission // Remote Sensing of Environment. 2012. Vol. 120. P. 9–24. doi: 10.1016/j.rse.2011.05.028
- Trifonov V.G. Using active faults for estimating seismic hazard // J. Earthquake Predict. Res. 2000. Vol. 8. No. 2. P. 157–184.
- Tsutsumi H., Sato T. Tectonic geomorphology of the southernmost Sagaing Fault and surface rupture associated with the May 1930 Pegu (Bago) earthquake, Myanmar // Bull. Seism. Soc. Am. 2009. Vol. 99. P. 2155–2168. doi: 10.1785/0120080113
- USGS Earthquake Hazard Program. ‒ M 7.5‒2023 Elbistan earthquake, Kahramanmaras earthquake sequence, URL: https://earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive (Accessed June 16, 2025).
- USGS Earthquake Hazard Program. ‒ M 7.7‒2025 Mandalay, Burma (Myanmar) Earthquake, URL: https://earthquake.usgs.gov/earthquakes/eventpage/us7000pn9s/executive (Accessed June 16, 2025).
- Van der Meer D.G., Van Hinsbergen D.J., Spakman W. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity // Tectonophysics. 2018. Vol. 723. P. 309–448. doi: 10.1016/j.tecto.2017.10.004
- Vernant P., Bilham R., Szeliga W., Drupka D., Kalita S., Bhattacharyya A.K., Berthet T. Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills and Shillong Plateau // J. Geophys. Res.: Solid Earth. 2014. Vol. 119. P. 6558–6571. doi: 10.1002/2014JB011196
- Vigny C., Socquet A., Rangin C., Chamot-Rooke N., Pubellier M., Bouin M.N., Becker M. Present-day crustal deformation around Sagaing fault, Myanmar // J. Geophys. Res.: Solid Earth. 2003. Vol. 108 (B11). 2533. doi: 10.1029/2002JB001999
- Wang M., Shen Z.K. Present-day crustal deformation of continental China ferived from GPS and its tectonic implications // J. Geophys. Res.: Solid Earth. 2020. Vol. 125. e2019JB018774. doi: 10.1029/2019JB018774
- Wang Y., Shyu J.B.H., Sieh K., Chiang H.W., Wang C.C., Thura Aung, Soe Thura Tun. Permanent upper plate deformation in western Myanmar during the great 1762 earthquake: Implications for neotectonic behavior of the northern Sunda megathrust // J. Geophys. Res.: Solid Earth. 2013. Vol. 118. P. 1277–1303. doi: 10.1002/jgrb.50121
- Wang Y., Sieh K., Soe Thura Tun, Lai K.-Y., Than Myint. Active tectonics and earthquake potential of the Myanmar region // J. Geophys. Res.: Solid Earth. 2014. Vol. 119. P. 3767–3822. doi: 10.1002/2013JB010762
- Wang Y., Sieh K., Thura Aung, Soe Min, Saw Ngwe, Khaing, Soe Thura Tun. Earthquakes and slip rate of the southern Sagaing Fault: insights from an offset ancient fort wall, lower Burma (Myanmar) // Geophys. J. Int. 2011. Vol. 185. P. 49–64. doi: 10.1111/j.1365-246X.2010.04918.x
- Wells D.L., Coppersmith K.J. New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bull. Seism. Soc. Am. 1994. Vol. 84. P. 974–1002.
- Yang J.W., Xu Z.Q., Duan S.D., Li Z., Xyun F.S., Liu Zh., Zai Zh.H., Li H.Z. Discovery of a Jurassic SSZ ophiolite in the Myitkyina region of Myanmar // Journal Yanshi Xuebao. 2012. Vol. 28. P. 1710–1730. (In Chinese with English abstr.).
- Yin A., Harrison T.M. Geological evolution of the Himalayan–Tibetan orogen // Ann. Rev. Earth and Planet. Sci. 2000. Vol. 28. P. 211–280. doi: 10.1146/annurev.earth.28.1.211
- Zhang Q., Wang Y., Zhou G.Q., Qian Q., Robinson P.T. Ophiolites in China: Their distribution, age and tectonic setting. ‒ In: Ophiolites in Earth history. ‒ Ed. by Y. Dilek, P.T. Robinson, (Geol. Soc. London. Spec. Publ. 2003. Vol. 218), P. 541–566.
Arquivos suplementares

