Determining locations of possible earthquakes in the western Tien Shan using artificial neural network and a mathematical model of tectonic processes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we developed a numerical model of the stress state of the earth’s crust of the Western Tien Shan microplate to use as additional features for machine learning. An alternative to the deep learning models could be a neural network based on the Kolmogorov‒Arnold (KAN) general approximation theorem. What distinguishes KAN from existing machine learning networks is its interpretability, i.e. the ability to explain the “logic” of the model’s operation and high accuracy in complex physical processes. KANs differs from existing machine learning networks in its high interpretation and accuracy in complex physical processes. Unlike conventional networks, KAN neural network requires only one or two layers to obtain a solution to the problem, which significantly reduces the computing power. Using the KANs algorithm, we have built for the first time a neural network for classification and regression applied to the medium-term earthquake prediction in the Western Tien Shan microplate. The results obtained allowed us to predict the locations of possible earthquakes with a magnitude of 5 > M < 6 in environs of the city Tashkent (the Capital of Republic of Uzbekistan). The performed retrospective analysis of strong earthquakes that occurred in 2024 within the West Tien Shan microplate showed that the developed model predicts the locations of earthquakes with a magnitude of M < 6 with an accuracy of geographic coordinates of ±0.1° N, ±0.1° E and a magnitude of ΔM = ±0.4.

About the authors

I. U. Atabekov

Mavlyanov Institute of Seismology, Academy of Sciences of Republic of Uzbekistan

Email: atabekovi@mail.ru
bld. 3, st. Zulfiyakhanum, 100028 Tashkent, Uzbekistan

A. I. Atabekov

Research Institute of Digital Technology and Artificial Intelligence under the Min. Digital technologies of the Republic of Uzbekistan

Email: atabekovi@mail.ru
Buz-2, 17A, 100125 Tashkent, Uzbekistan

J. K. Mamarakhimov

Mavlyanov Institute of Seismology, Academy of Sciences of Republic of Uzbekistan

Author for correspondence.
Email: atabekovi@mail.ru
bld. 3, st. Zulfiyakhanum, 100028 Tashkent, Uzbekistan

References

  1. Атабеков И.У. Опыт моделирования сейсмотектонического течения земной коры в Центральной Азии // Изв. АН СССР. Физика Земли. 2021. №1. С. 122–132. doi: 10.31857/S0002333721010014
  2. Бреббия К., Телес Ж., Вробел Л. Методы граничных элементов. ‒ М.: Мир, 1987, 524 с.
  3. Гвишиани А.Д., Соловьев А.А., Дзебоев Б.А. Проблема распознавания мест возможного возникновения сильных землетрясений: актуальный обзор // Изв. АН СССР. Физика Земли. 2020. № 1. С. 5–29. doi: 10.31857/S0002333720010044
  4. Геология и полезные ископаемые Республики Узбекистан. ‒ Под ред. Т.Ш. Шаякубова, Т.Н. Далимова ‒ Ташкент: “Университет”, 1998, 723с.
  5. Као Д.Ч. Исследование и применение нейросетевых технологий в задаче прогнозирования землетрясений (На примере северо-западного района Вьетнама). ‒ Дис. … к. т. н. (РУДН, г. Москва, Россия. 2013), 166 с.
  6. Колмогоров А.Н. О представлении непрерывных функций многих переменных суперпозициями непрерывных функций меньшего числа переменных //Докл. АН СССР. 1956. Т. 108. № 2. С. 179–182.
  7. Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1974 г. ‒ Под ред. Н.В. Кондорской, Н.В. Шебалина ‒ М.: Наука, 1977.
  8. Феодосьев В.И. Сопротивление материалов. – М.: МГТУ, 2010. 591 с.
  9. Ashif P., Hojjat A. Neural network model for earthquake magnitude prediction using multiple seismicity indicator // Int. J. of Neural Systems. 2007. Vol. 17. No. 1. P. 13‒33. https://doi.org/10.1016/j.neunet.2009.05.003
  10. Ashit K.D. Earthquake prediction using artificial neural networks // Int. J. Research and Reviews in Computer Sci. (IJRRCS). 2011. Vol. 2. No. 6. P. 2079‒2557.
  11. Atabekov I. Earth Crust’s stresses variation in Central Asian earthquake’s region //Geodes. Geodynam. 2020. Vol. 11. Is. 4. P. 293‒299. https://doi.org/10.1016/j.geog.2019.12.005
  12. Cybenko G. Approximation by superpositions of a sigmoidal function. // Mathematics of Control, Signals and Systems. 1989. Vol. 2. Is. 4. P. 303–314.
  13. Florido E., Aznarte J.L., Morales-Esteban A., Martínez-Álvarez F. Earthquake magnitude prediction based on artificial neural networks: A survey //Croatian Operational Research Review (Zagreb). 2016. Vol. 7. Is. 2. P. 159‒169. doi: 10.17535/crorr.2016.0011
  14. Hochreiter S., Schmidhuber J. Long short-term memory // Neural Computation. 1997. Vol. 9. Is. 8. P. 1735–1780. doi: 10.1162/neco.1997.9.8.1735
  15. Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators // Neural Networks. 1989. Vol. 2. Is. 5. P. 359–366.
  16. Ismayilova A., Ismailov V.E. On the Kolmogorov neural networks //Neural Networks. 2024. Vol. 176. 106333. https://doi.org/10.1016/j.neunet.2024.106333
  17. Lai M.-L., Shen Zh. The Kolmogorov superposition theorem can break the curse of dimensionality when approximating high dimensional functions. ‒ Cornell Univ. 2021. arXiv:2112.09963v5 [math.NA]. https://doi.org/10.48550/arXiv.2112.09963
  18. Liu Z., Wang Y., Vaidya S., Ruehle F., Halverson J., Soljačić M., Hou Th.Y., Tegmark M. KAN: Kolmogorov-Arnold Networks. ‒ Cornell Univ., Int. Conference on Learning Representations (ICLR). 2024. arXiv 2404. 18756. v. 5 [cs LG]. https://doi.org/10.48550/arXiv.2404.19756
  19. Mahmoudi J., Arjomand M.A., Rezaei M., Mohammadi M.H. Predicting the earthquake magnitude using the multilayer perceptron neural network with two hidden layers // Civil Engineer. Journal. 2016. Vol. 2. No. 1. P. 1–12.
  20. Panakkat A., Adeli H. Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators // Computer-Aided Civil and Infrastructure Engineering. 2009. Vol. 24. No. 4. P. 280–292.
  21. Rangulov B. New trends in earthquake prediction – A case study of performance // Earthquake. 2024. Vol. 3. Is. 1. doi: 10.59429/ear.v3i1.8254
  22. Ridzwan N.S.M., Yusoff S.H.M. Machine learning for earthquake prediction: A review (2017–2021) //Earth Sci. Inform. 2023. Vol. 16. P. 1133–1149. https://doi.org/10.1007/s12145-023-00991-z
  23. Rouet-Leduc B., Hulbert C., Lubbers N., Barros K., Humphreys C.J., Johnson P.A. Machine learning predicts laboratory earthquakes //Geophys. Res. Lett. 2017. Vol. 44. P. 9276–9282. https://doi.org/10.1002/2017GL074677
  24. Saad O.M., Chen Y., Savvaidis A., Fomel S., Jiang X., Huang D., Oboué Y.A.S., Yong S., Wang X., Zhang X., et al. Earthquake Forecasting Using Big Data and Artificial Intelligence: A 30-Week Real-Time Case Study in China // Bull. Seism. Soc. Am. 2023. Vol. 113. P. 2461–2478. doi: 10.1785/0120230031
  25. Shan W., Zhang M., Wang M., Chen H., Zhang R., Yang G., Tang Y., Teng Y., Chen J. EPM–DCNN: Earthquake prediction models using deep convolutional neural networks // Bull. Seism. Soc. Am. 2022. Vol. 112. P. 2933–2945. doi: 10.1785/0120220058
  26. Wang Q., Guo Y., Yu L., Li P. Earthquake prediction based on spatio-temporal data mining: An LSTM network approach // IEEE Transactions on Emerging Topics in Computing. 2020. Vol. 8. Is.1. P. 148‒158. doi: 10.1109/TETC.2017.2699169
  27. Wang X., Yuechen Z.Z., Li Y.Z., Jia K. Small earthquakes can help predict large earthquakes: A machine learning perspective // Appl. Sciences. 2023. Vol. 13. Art. 6424. https://doi.org/10.3390/app13116424
  28. Zubovich A.V., Wang X., Scherba Y.G., Schelochkov G.G., Reilinger R., Reigber C., et al. GPS velocity field for the Tien Shan and surrounding regions // Tectonics. 2010. Vol. 29. No. 6. P. 1‒23. TC6014. doi: 10.1029/2010TC002772
  29. Uzbekistan Earthquake Report, https://earthquakelist.org/uzbekistan/#statistics. Accessed 2025.
  30. PyTorch, https:// docs.pytorch.org/get-started/locally/. Accessed 2025.
  31. TensorFlow, https:// www.tensorflow.org/install?hl=ru . Accessed 2025.
  32. Topographic maps, https//ru-ru.topographic-map.com. Accessed January, 2025.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».