Structure of the Lithosphere and Conditions of Formation of Oceanic Rises in the Sub-Antarctic Sector of the South Atlantic Using Density and Physical Modeling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinematic reorganization of plate boundaries, accompanied by the cessation of old spreading centers and the formation of new ones, and manifestations of plume magmatic activity in the southeastern part of the Antarctic sector of the South Atlantic led to the formation of a complex structural plan of the region. As a result of these processes, a system of ridges, rises, and plateaus with varying morphological expressions and different geophysical characteristics were formed. Results of density modeling of the crust and lithosphere structure along profiles extending from the Falkland Plateau to the Mozambique Ridge and crossing a series of rises and ridges separated by deepwater basins showed that rises have different crustal structures, indicating different origins. The conditions for the formation of different types of submarine rises were studied based on physical modeling. A new experimental model of lithosphere and submarine rises formation in the region was constructed, in which the fracture of the large Agulhas magmatic province into the Agulhas Plateau and the Northeast Georgia rise played an important role, as did the accretion of oceanic crust on the Agulhas spreading ridge and subsequent jump of the spreading axis, leading to the cessation of spreading on this ridge and the formation of the southern segment of the Mid-Atlantic Ridge and its associated Meteor and Islas Orcadas rises. Jumps of spreading axes, accompanied by the periodic activity of hotspots, played an important role in the formation of submarine rises of different genetic types, which determined the different structures of their crust.

About the authors

E. P. Dubinin

Earth Science Museum (The Natural History Museum) at Lomonosov Moscow State University; Lomonosov Moscow State University, Geological Faculty

Email: dasha_0292r@mail.ru
Russia, 119991, Moscow, bld.1, Leninsky Gory; Russia, 119991, Moscow, bld.1, Leninsky Gory

D. A. Ryzhova

Earth Science Museum (The Natural History Museum) at Lomonosov Moscow State University; Lomonosov Moscow State University, Geological Faculty

Author for correspondence.
Email: dasha_0292r@mail.ru
Russia, 119991, Moscow, bld.1, Leninsky Gory; Russia, 119991, Moscow, bld.1, Leninsky Gory

A. I. Chupakhina

Earth Science Museum (The Natural History Museum) at Lomonosov Moscow State University

Email: dasha_0292r@mail.ru
Russia, 119991, Moscow, bld.1, Leninsky Gory

A. L. Grokholsky

Earth Science Museum (The Natural History Museum) at Lomonosov Moscow State University

Email: dasha_0292r@mail.ru
Russia, 119991, Moscow, bld.1, Leninsky Gory

A. A Bulychev

Lomonosov Moscow State University, Geological Faculty

Email: dasha_0292r@mail.ru
Russia, 119991, Moscow, bld.1, Leninsky Gory

References

  1. Грохольский А.Л., Дубинин Е.П. Аналоговое моделирование структурообразующих деформаций литосферы в рифтовых зонах срединно-океанических хребтов // Геотектоника. 2006. № 1. С. 76‒94.
  2. Дубинин Е.П., Грохольский А.Л., Макушкина А.И. Физическое моделирование условий образования микроконтинентов и краевых плато континентальных окраин // Физика Земли. 2018. № 1. С. 69‒82.
  3. Дубинин Е.П., Сущевская Н.М., Грохольский А.Л. История развития спрединговых хребтов Южной Атлантики и пространственно-временнóе положение тройного соединения Буве // Российский журнал наук о Земле. 1999. Т. 1. № 5. С. 423‒443.
  4. Дубинин Е.П., Кохан А.В., Тетерин Д.Е., Грохольский А.Л., Курбатова Е.С., Сущевская Н.М. Тектоническое строение и типы рифтогенных бассейнов моря Скотия, Южная Атлантика // Геотектоника. 2016. № 1. С. 41‒61.
  5. Дубинин Е.П., Грохольский А.Л. Особенности структурообразования в процессе развития литосферы Аденского залива (физическое моделирование) // Геодинамика и тектонофизика. 2020. Т. 11. № 3. С. 522‒547.
  6. Дубинин Е.П., Чупахина А.И., Грохольский А.Л. Физическое моделирование условий формирования подводных поднятий Метеор и Айлос Оркадас (Южная Атлантика) // Океанология. 2023. Т. 63. № 3. С. 482‒491.
  7. Лейченков Г.Л., Гусева Ю.Б., Гандюхин В.В., Иванов С.В. Строение земной коры и история геологического развития осадочных бассейнов индоокеанской акватории Антарктики. ‒ С-Пб: ИЦ “Академия”, 2015. 200 с.
  8. Лейченков Г.Л., Сущевская Н.М., Беляцкий Б.В. Геодинамика атлантического и индийского секторов Южного океана // ДАН. 2003. Т. 391. № 5. С. 675–678.
  9. Пейве А.А., Зителлини Н., Перфильев А.С., Мазарович А.О., Разницин Ю.Н., Турко Н.Н., Симонов В.А., Аверьянов С.Б., Бортолуци Д., Булычев А.А., Гасперини Л., Гилод Д.А., Гладун В.А., Евграфов Л.М., Ефимов В.Н. и др. Строение Срединно-Атлантического хребта в районе тройного сочленения Буве // ДАН. 1994. Т. 338. № 5. С. 645‒648.
  10. Пейве А.А., Перфильев А.С., Пущаровский Ю.М., Симонов В.А., Турко Н.Н., Разницин Ю.Н. Строение района южного окончания Срединно-Атлантического хребта (тройное сочленение Буве) // Геотектоника. 1995. № 1. С. 51‒68.
  11. Пущаровский Ю.М. Тектоника и геодинамика спрединговых хребтов Южной Атлантики // Геотектоника. 1998. № 4. С. 41‒52.
  12. Рыжова Д.А., Коснырева М.В., Дубинин Е.П., Булычев А.А. Строение тектоносферы Мозамбикского и Мадагаскарского хребтов по геофизическим данным // Вестн. МГУ. Сер.4. Геология. 2021. № 6. С. 20‒29.
  13. Удинцев Г.Б., Береснев А.Ф., Куренцова Н.А. и др. Пролив Дрейка и море Скоша – океанские ворота Западной Антарктики. ‒ В кн.: Строение и история развития литосферы. ‒ Т. 4 ‒ Вклад России в Международный Полярный год. ‒ М.: Paulsen, 2010. С. 66‒90.
  14. Шеменда А.Н. Критерии подобия при механическом моделировании тектонических процессов // Геология и геофизика. 1983. № 10. С. 10‒19.
  15. Ben-Avraham Z., Hartnady C.J.H., le Roex A.P. Neotectonic activity on continental fragments in the Southwest Indian Ocean: Agulhas Plateau and Mozambique Ridge // J. Geophys. Res. 1995. Vol. 100. B4. P. 6199‒ 6111.
  16. Bradford M.C., Hailwood E.A. Magnetostratigraphy of Sediments from Sites 701 and 702. ‒ In: SubAntarctic South Atlantic. ‒ Proceedings of Scientific Results ODP, Leg. 114. ‒ (Ocean Drilling Program, Sci. Prospects. College Station, TX. 1991. Vol. 114). P. 359‒366.
  17. Brenner C., La Brecque J.L. Bathymetry of the Georgia Basin and environs. ‒ In: Sub-Antarctic South Atlantic. ‒ Proc. Sci. Results ODP, Leg. 114. ‒ (Ocean Drilling Program, Sci. Prospects. College Station, TX. 1988. Vol. 114). P. 23‒26.
  18. Ciesielski P.R., Kristoffersen Y., Hailwood E.A., et al. Site 698. – In: SubAntarctic South Atlantic. ‒ Proc. Sci. Results ODP, Leg. 114. ‒ (Ocean Drilling Program, Sci. Prospects. College Station, TX. 1988. Vol. 114). P. 87‒ 254.
  19. Cox K.G. Karoo igneous activity, and the early stages of the break-up of Gondwanaland. ‒ In: Magmatism and the Causes of Continental Break-Up. ‒ Ed.by B.C. Storey, T.Alabaster, R.J. Pankhurst ‒ (Geol. Soc., London, Spec. Publ. 1992. Vol. 68). P. 137‒148.
  20. Eagles G., Jokat W. Tectonic reconstructions for paleobathymetry in Drake Passage // Tectonophysics. 2014. Vol. 611. P. 28‒50.
  21. Eagles G., König M. A model of plate kinematics in Gondwana breakup // Geophys. J. Int. 2008. Vol. 173. P. 703–717.
  22. Evans H.F., Westerhold T., Channell J.E.T. ODP Site 1092: Revised Composite Depth Section has Implications for Upper Miocene 'Cryptochrons' // Geophys. J. Int. 2004. Vol. 156. No. 2. P. 195‒199.
  23. Fischer M.D., Uenzelmann-Neben G., Jacques G., Werner R. The Mozambique Ridge: A document of massive multistage magmatism // Geophys. J. Int. 2017. Vol. 208. No. 1. P. 449‒467.
  24. Galindo-Zaldivar J., Balanya J., Bohoyo F., Jabaloy A. Active crustal fragmentation along the Scotia–Antarctic plate boundary east of the South Orkney Microcontinent (Antarctica) // Earth Planet. Sci. Lett. 2002. Vol. 204. P. 33‒46.
  25. Gohl K., Uenzelmann-Neben G. The crustal role of the Aguhlas Plateau, southwest Indian Ocean: Evidence from seismic profiling // Geophys. J. Int. 2001. Vol. 144. P. 632‒646.
  26. Hanyu T., Nogi Y., Fujii M. Crustal formation and evolution processes in the Natal Valley and Mozambique Ridge, off South Africa // Polar Science. 2017. Vol. 13. P. 66‒81.
  27. Hastie W.W., Watkeys M.K., Aubourg C. Magma flow in dyke swarms of the Karoo LIP: implications for the mantle plume hypothesis. // Gondwana Research. 2014. Vol. 25. P. 736‒755.
  28. Hoernle K., Schwindrofska A., Werner R., van den Bogaard P., Hauff F., Uenzelmann-Neben G., Garbe-Schönberg D.D. Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas-Falkland Fracture Zone // Geology. 2016. Vol. 44. No. 4. P. 263‒266.
  29. Jacques G., Hauff F., Hoernle K. et al. Nature and origin of the Mozambique Ridge, SW Indian Ocean // Chem. Geol. 2019. Vol. 507. P. 9‒22.
  30. Kent D.V., Gradstein F.M. A Jurassic to recent chronology. ‒ In: The Western North Atlantic Region. ‒ (GSA. 1986. Vol. M). P. 45‒50.
  31. König M., Jokat W. The Mesozoic breakup of the Weddell Sea // J. Geophys. Res. 2006. Vol. 111. P. 1‒28.
  32. König M., Jokat W. Advanced insights into magmatism and volcanism of the Mozambique Ridge and Mozambique Basin in the view of new potential field data // Geophys. J. Int. 2010. Vol. 180. No. 1. P. 158‒180.
  33. Kristoffersen Y., Labrecque J. On the tectonic history and origin of the Northeast Georgia Rise. ‒ In: SubAntarctic South Atlantic. ‒ Proc. Sci. Results ODP, Leg. 114. ‒ (Ocean Drilling Program, Sci. Prospects. College Station, TX. 1991. Vol. 114). P. 23‒38.
  34. Labrecque J.L., Ciesielski P.F., Clement B. Sub-Antarctic South Atlantic. ‒ in: Proceedings of Scientific Results ODP, Leg. 114. ‒ (Ocean Drilling Program, Sci. Prospects. 1987. Vol. 114), p. 135.
  35. Labrecque J.L., Hayes D.E. Seafloor spreading history of the Agulhas Basin // Earth Planet. Sci. Lett. 1979. Vol. 45. No. 2. P. 411‒428.
  36. Laughton A.S., Matthews D.H., Fisher R.L. The structure of the Indian Ocean. ‒ In: The Sea; Ideas and Observations. ‒ Ed.by M. Hill, (NY, USA. 1970. Vol. 4. Is. 2). P. 543‒586.
  37. Lawver L.A., Gahagan L.M., Dalziel I.W.D. A tight fit-early Mesozoic Gondwana: A plate reconstruction perspective // Mem. Nat. Inst. Polar Res. Spec. 1998. Iss. 53. P. 214‒229.
  38. Le Roex A., Class C., O’Connor J., Jokat W. Shona and discovery aseismic ridge systems, South Atlantic: Trace element evidence for enriched mantle sources // J. Petrol. 2010. Vol. 51. No. 10. P. 2089‒2120.
  39. Leinweber V.T., Jokat W. The Jurassic history of the Africa-Antarctica corridor – new constraints from magnetic data on the conjugate continental margins // Tectonophysics. 2012. Vol. 530–531. P. 87‒101.
  40. Marks K.M., Stock J.M. Evolution of the Malvinas Plate south of Africa // Marin. Geophys. Res. 2001. Vol. 22. P. 289‒302.
  41. Marks K.M., Tikku A.A. Cretaceous reconstructions of East Antarctica, Africa and Madagascar // Earth Planet. Sci. Lett. 2001. Vol. 186. P. 479‒495.
  42. Martos Y.M., Galindo-Zaldívar J., Catalán M., Bohoyo F., Maldonado A. Asthenospheric Pacific-Atlantic flow barriers and the West Scotia Ridge extinction // J. Geophys. Res. 2014. Vol. 41. P. 43‒49.
  43. Matsinhe N.D., Tang Y., Li CF. et al. The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean // Acta Oceanologica Sinica. 2021. Vol. 40. No. 7. P. 170‒182.
  44. Meyer B., Chulliat A., Saltus R. Derivation and Error Analysis of the Earth Magnetic Anomaly Grid at 2 arc min Resolution Version 3 (EMAG2v3) // Geochem. Geophys. Geosyst. 2017. Vol. 18. P. 4522‒4537.
  45. Mueller C.O., Jokat W., Schreckenberger B. The crustal structure of Beira High, central Mozambique—Combined investigation of wide-angle seismic and potential field data // Tectonophysics. 2016. Vol. 683. P. 233‒ 254.
  46. Mueller C.O., Jokat W. The initial Gondwana break-up: A synthesis based on new potential field data of the Africa-Antarctica Corridor // Tectonophysics. 2019. Vol. 750. P. 301‒328.
  47. Muller R.D., Sdrolias M., Gaina C., Roest W.R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust // Geochem. Geophys. Geosyst. 2008. Vol. 9. No. 4. P. 1‒19.
  48. Parsiegla N., Gohl K., Uenzelmann-Neben G. The Agulhas Plateau: Structure and evolution of a large igneous province // Geophys. J. Int. 2008. Vol. 174. P. 336‒350.
  49. Pérez Díaz L, Eagles G. Constraining South Atlantic growth with seafloor spreading data // Tectonics. 2014. Vol. 33. No. 9. P. 1848‒1873.
  50. Raymond C.A., LaBrecque J.L., Kristoffersen Y. Islas Orcadas Rise and Meteor Rise: The tectonic and depositional history of two aseismic plateaus from sites 702, 703, and 704. – In: Sub-Antarctic South Atlantic. ‒ Proc. Sci. Results ODP, Leg. 114. ‒ (Ocean Drilling Program, Sci. Prospects. College Station, TX. 1991. Vol. 114). P. 5‒22.
  51. Reeves C. V. et al. Insight into the Eastern Margin of Africa from a new tectonic model of the Indian Ocean // Geol. Soc. London, Spec. Publ .2016. Vol. 431. No. 1. P. 299‒323.
  52. Reeves C.V., de Wit M.J. Making ends meet in Gondwana: retracing the transforms of the Indian Ocean and reconnecting continental shear zones // Terra Nova. 2000. Vol. 12. No. 6. P. 272‒282.
  53. Riley T.R., Leat P.T., Curtis M.L., Millar L.L., Fazel A. Early-Middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): Identifying mantle sources in the Karoo large igneous province // J. Petrol. 2005. Vol. 46. P. 1489‒1524.
  54. Sandwell D.T., Müller D., Smith W.H.F., Garcia E., Francis R. New global marine gravity from CryoSat-2 and Jason-1 reveals buried tectonic structure // Science. 2014. Vol. 346. No. 6205. P. 65‒67.
  55. Schaeffer A.J., Lebedev S. Global shear speed structure of the upper mantle and transition zone // Geophys. J. Int. 2013. Vol. 194. P. 417‒449.
  56. Schimschal C.M., Jokat W. The Falkland Plateau in the context of Gondwana breakup // Gondwana Research. 2019. Vol. 68. P. 108‒115.
  57. Shemenda A.I., Grokholsky A.L. A formation and evolution of overlapping spreading centers (constrained on the basis of physical modeling) // Tectonophysics. 1991 Vol. 199. P. 389‒404.
  58. Shemenda A.I., Grocholsky A.L. Physical modeling of slow seafloor spreading // J. Geophys. Res. 1994. Vol. 99. P. 9137‒9153.
  59. Simmons N.A., Myers S.C., Johannesson G., Matzel E. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction // J. Geophys. Res. 2012. Vol. 117. No. B10. P. 1‒28.
  60. Simpson E.S.W., Schlich R., et al. Initial Reports of the Deep Sea Drilling Project. ‒ (Washington, U.S. Govern. Print. Office. 1974. Vol. 25). P. 1‒873.
  61. Sleep N.H. Ridge-crossing mantle plumes and gaps in tracks // Geochem. Geophys. Geosyst. 2002. Vol. 3. No. 12. P. 1‒33.
  62. Thompson J. O., Moulin M., Aslanian D., de Clarens P., Guillocheau F. New starting point for the Indian Ocean: Second phase of breakup for Gondwana // Earth-Science Rev. 2019. Vol. 191. P. 26‒56.
  63. Torsvik T.H., Rousse S., Labails C., Smethurst M.A. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin // Geophys. J. Int. 2009. Vol. 177. No. 3. P. 1315‒1333.
  64. Tucholke B.E., Houtz R.E., Barrett D.M. Continental crust beneath the Agulhas Plateau, Southwest Indian Ocean // J. Geophys. Res.1981. Vol. 86. P. 3791‒3806.
  65. Vérard C., Flores K., Stampfli G. Geodynamic reconstructions of the South America–Antarctica plate system // J. Geodynamics. 2012. Vol. 53. P. 43‒60.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (2MB)
4.

Download (1MB)
5.

Download (737KB)
6.

Download (598KB)
7.

Download (103KB)
8.

Download (1MB)
9.

Download (1MB)

Copyright (c) 2023 Е.П. Дубинин, Д.А. Рыжова, А.И. Чупахина, А.Л. Грохольский, А.А. Булычев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies