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Absctract. In this work, artificial neural networks were used to solve the problem of recovering the
vector anomalous magnetic field from one-component data. To train the artificial neural network, a

database of anomalous magnetic field components B, , B, , B, was created using a set of point

magnetic dipoles located beneath the field measurement plane. The performance of the trained
neural network was demonstrated on a synthetic example in comparison with a known numerical
algorithm for recovering the vector field from single-component data. Furthermore, using data from
the vertical component of the anomalous geomagnetic field, artificial neural networks were used to
recover the horizontal components of the anomalous geomagnetic field in the territory of 58 — 85° E,

52°—74° N with a grid step of 2 angular minutes.
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1. INTRODUCTION

Vector anomalous magnetic field models are widely used for geophysics, navigation, and
directional drilling tasks [Buchanan et al., 2013; Kaji et al., 2019]. However, the amount of modular
anomalous field data exceeds the number of vector measurements. Therefore, to obtain a high-
precision model of the vector magnetic field, special methods are used to calculate the vector
anomalous magnetic field from known one-component anomalous magnetic field data.

Examples of such methods are the magnetic potential method [Lourenco and Morrison,
1973; Kolesova and Cherkaeva, 1987] and the magnetic dipole method [Montesinos et al., 2016;
Kaftan, 2017]. In the magnetic potential method, the field components are described by double
Fourier series, the coefficients of which are connected through the potential of the anomalous
magnetic field. However, this method requires that the magnetic anomaly be completely within the
measurement area [Lourenco and Morrison, 1973; Kolesova and Cherkaeva, 1987]. Using the dipole
method, the desired vector field is calculated based on the known component of the anomalous field,
using a set of fictitious point dipoles, the positions of which are selected by trial and error under the
scanning plane of the anomalous field. However, the processing time of the dipole method increases
rapidly with an increase in the number of dipoles and measurement points of the anomalous
magnetic field.

For fast processing of large volumes of digital images, the use of artificial neural networks is
effective. Artificial neural networks are widely used for applications in computer vision and image
classification [Krizhevsky et al., 2012]. Neural networks trained on data about physical processes
have been used for modeling magnetic fields, as well as for interpolation and extension of magnetic
fields measured on a sparse grid [Coskun et al., 2022; Pollok et al., 2021; Pollok et al., 2023]. In
some cases, a trained neural network shows higher accuracy compared to traditional numerical
algorithms [Coskun et al., 2022; Pollok et al., 2021].

In this paper, a new method for reconstructing the vector magnetic field using artificial
neural networks is proposed. The neural network takes as input the vertical B, -component of the
anomalous field with a dimension of 40%40 pixels, and then reconstructs the components in the B,

and 5, plane. For training the developed neural network, a database containing 50,000 random
anomalous magnetic fields was created, which were obtained using the total field of point magnetic
dipoles. A comparison was made between the developed neural network and a known numerical
method for vector field reconstruction [Lourenco and Morrison, 1973; Kolesova and Cherkaeva,

1987]. The performance of the neural network was also verified using data of the vertical



component of the anomalous field obtained from the IGRF-13 [Alken et al., 2021] and EMM2017
[Maus, 2010; The National Centers for Environmental Information, 2018] models in the territory of

58 —85° E, 52 — 74° N with a grid step of 2 angular minutes.

2. METHOD DESCRIPTION

2.1. Neural Network Architecture

The scheme of the developed artificial neural network is shown in Fig. 1. The known
distribution of the vertical component of the anomalous field B ,with dimensions of 40 x 40 pixels is
fed to the input of the neural network. For preliminary rough calculation, a dense neural network is
used, containing an input layer, an internal layer, and an output layer with a dimension of 40x40
neurons. Then, the results of the rough calculation of the anomalous field components are fed to the
input of the refining neural network. Refinement occurs using a convolutional neural network with
an input layer, an output layer, and two internal layers containing 40%40 neurons. A linear activation
function of neurons was used in the developed model.

Fig. 1.

The neural network was implemented using the fensorflow library [Abadi et al., 2016]. The
choice of the tensorflow library is justified by high performance, flexibility, and ease of neural
network development. The stochastic gradient descent algorithm Adam [Kingma et al., 2014] was
used for training the neural network.

To train a neural network and further assess the accuracy of magnetic field reconstruction, it is
necessary to define a residual function. There are many known residual functions, some of which are
implemented in the fensorflow package, such as mean square deviation, mean absolute deviation,
etc. There are also more advanced functions, for example, the PE -function [Barkhatov et al., 2017].
The choice of a specific residual function for training a neural network depends on the type of input
data and can be selected experimentally. In this work, for simplicity, the mean square error function

was chosen in the form
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where B _ known field at point 7 , 5 _ reconstructed field at point 7, { > — mean square of

the known anomalous field, N — total number of measurement points.



The training database consists of 50,000 random components of the anomalous magnetic field

Bxa B}»’ B"

=, of which 45,000 components were used for training the artificial neural network, and
5,000 components were used for validating the neural network training process. During training, the

residual reached values of L < 4-10 .

2.2. Direct modeling of the anomalous field
Point dipoles were used to model the anomalous magnetic field, as the magnetic field of a
magnetized body at distances exceeding its dimensions is equivalent to the field of a point dipole.

The field of a point magnetic dipole is determined by the well-known formula [ Yanovsky, 1978]

—
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where T — vector from the dipole location to the measurement point, - magnetic moment
of the dipole in the Cartesian coordinate system. The anomalous magnetic field is modeled using a
random distribution of 1 — 400 point magnetic dipoles. The components of the anomalous magnetic
field are then calculated in a plane at some height above the point dipoles and entered into the
database. The numerical values of the anomalous field components are normalized so that they lie in

the range [-1, 1].

2.3. Neural Network Training

The training of the developed neural network was conducted on a personal computer with an
Intel Core 17-9700 processor and an NVIDIA GeForce GTX 950 graphics card. In order to utilize the
2 GB of free graphics card memory, the input data for training, with a total size of just over 2 GB,
was divided into equal parts of 1 GB each. Further training was conducted on each data series until
the validation set error became greater than the training set error. An example of the error function
dynamics graph during training on a logarithmic scale is shown in Fig. 2.

Fig. 2.

Fig. 2 shows the process of decreasing the error function value for the training data and for the
validation data. To avoid overfitting of the neural network, the training process was stopped if the
validation set error began to increase relative to the training set error [Ying, 2019]. This moment is

indicated by an arrow in Fig. 2, corresponding to approximately epoch number 80.



3. SYNTHETIC EXAMPLE

The trained neural network was tested using test anomalous magnetic fields that were not
included in the general database during the training process. Fig. 3 shows the result of the trained
neural network operation for a specific example in comparison with the numerical algorithm for
reconstructing horizontal components of the anomalous magnetic field, which is described in detail
in [Lourenco and Morrison, 1973].

Fig. 3.

Fig. 3 a - 3 b shows the results of reconstructing the horizontal components B .and B ,of the
anomalous field from the vertical B ,-component data using a numerical algorithm. Figures 3 ¢ - 3 d
demonstrate the results of the trained neural network for the same input data. The series in Fig. 3
show the original components B ,and B ,, the reconstructed components B ,=rand B ,~, as well as
the difference between the original and reconstructed components of the magnetic field obtained
using the numerical algorithm and the artificial neural network.

Figure 3 shows that in the case of the numerical algorithm, the residual calculated using
formula (1) takes values L = 0.1067 and L = 0.1606 for components B ,and B ,respectively. For the
neural network results, the error takes values L = 0.0031 and L = 0.0018 for components B ,and B ,
respectively. Figures 3 a — 3 b show that in the case of the numerical algorithm, the main
contribution to the error comes from edge effects, which are absent in the neural network results, as
shown in Fig. 3 ¢ — 3 d . Edge effects occur when a magnetic anomaly does not fit entirely within
the study area [Lourenco and Morrison, 1973; Kolesova and Cherkaeva, 1987].

To reduce the overall residual, the outer 10 px of each image are removed, and the residual is
calculated in a 20x20 px area shown in Fig. 3. In this case, for the numerical algorithm, the residual
takes values L = 0.0082 and L = 0.0112 for components B .and B ,respectively, and in the case of
the trained neural network, the residual is L =4.2-10 “and L = 2.7-10 +for components B .and B,
respectively.

Furthermore, a comparison was made of the average residual between the numerical algorithm
results and the trained neural network on 1000 random distributions of anomalous magnetic field
that were not included in the database during neural network training. The sample also included
cases where the magnetic anomaly does not fit entirely within the considered area. The residual was
calculated both for the entire 40x40 px image and for 20x20 px images without edge pixels. The
results of this comparison are shown in Table 1.

Table 1.



The results presented in Table 1 show that the artificial neural network on average has better
accuracy in terms of the residual function (1) compared to the known numerical algorithm. If we
also take into account the influence of edge effects and discard 10 pixels from each edge of the
image, the accuracy of the vector field reconstruction increases significantly for both methods, but
even in this case, the neural network shows somewhat better results.

3.1. The effect of noise

Next, the artificial neural network performance was tested on noisy data. The test results are
shown in Fig. 4.

Fig. 4.

To simulate white noise, a random number in the range [-0.5, 0.5] was added to the value of
each pixel of the vertical component B ., as shown in Fig. 4 a . The true in-plane components, B .and
B ,, are also shown here. From the given noisy component B ,, the in-plane components B .and B,
were reconstructed using the artificial neural network, Fig. 4 b, and using the numerical algorithm,
Fig. 4 c.

The difference between the true components and the reconstructed ones is shown in Fig. 4 b
for the artificial neural network and in Fig. 4 ¢ for the numerical algorithm. In the case of the neural
network, the residual takes values L = 0.0578 for the B ,component and L = 0.0464 for the B,
component. For the numerical algorithm, the residual takes values L = 0.4613 for the B ,component
and L = 0.6579 for the B ,component.

Further, as in the previous section, a comparison was made of the average residual of the
results of the numerical algorithm and the trained neural network on 1000 random noisy
distributions of the vertical component of the anomalous magnetic field. The residual was also
calculated both for the entire 40x40 px image and for images without edge pixels, 20%20 px. The
results of this comparison are shown in Table 2.

Table 2.

The results shown in Table 2 demonstrate that the artificial neural network on average shows
better resistance to noise in the input data. Thus, in the case of the numerical algorithm, the average
discrepancy for B ,-and B ,-components of the anomalous field is L = 0.7493 and L = (0.8122
respectively. For the artificial neural network, the average discrepancy for B .-and B ,-components
of the anomalous field is L = 0.0733 and L = 0.0680 respectively. If we discard the edge pixels, then
for the numerical algorithm, the discrepancy takes values L = 0.1496 and L = 0.1895 for components
B .and B ,respectively, and for the artificial neural network the discrepancy takes values L = 0.0122

and L = 0.0126 for components B ,and B ,respectively.



4. CALCULATION OF ANOMALOUS GEOMAGNETIC FIELD COMPONENTS FROM
VERTICAL COMPONENT DATA
The artificial neural network was tested on a large volume of anomalous geomagnetic field
data. Using the IGRF-13 and EMM2017 models, data of the vertical component of the anomalous
field at an altitude of 4 km were obtained over the area 58 — 85° E, 52 — 74° N with a grid step of 2
angular minutes, as shown in Fig. 5.

Fig. 5.

The data of the main geomagnetic field generated by currents in the Earth's core were obtained
from the IGRF-13 model. The data of the total geomagnetic field were obtained from the EMM2017
model. The EMM2017 model allows obtaining both the main magnetic field and the field of
magnetic anomalies created by rocks in the Earth's crust with an accuracy of up to 51 km [The
National Centers for Environmental Information, 2018]. To obtain specifically the anomalous
magnetic field, the difference between the data of the total field model EMM?2017 and the main field
IGRF-13 was calculated. The calculation was carried out using the following parameters: year 2020,
altitude 4 km above sea level, longitude 58 — 85° E with a step of 0.03 degrees, latitude 52 — 74° N
with a step of 0.03 degrees. The results of reconstructing the components of the anomalous magnetic
field in the plane are shown in Fig. 6.

Fig. 6.

The anomalous field on the geographic coordinate grid was transformed into a uniform
kilometer grid with a distance of 2 km between adjacent points, totaling 1386x1286 points. For
image processing using an artificial neural network, the resulting vertical component map was
randomly divided into 50,000 overlapping sections of 40x40 pixels each.

Then each section was processed using a neural network, and to reduce the influence of edge
effects, 10 edge pixels of each image were removed. Finally, from small sections of 20x20 pixels
containing data on the reconstructed components B .and B ,of the anomalous magnetic field, maps
of the anomalous magnetic field of the original size were formed.

The calculation was performed on a personal computer; the processing time for 50,000 images
of 40x40 pixels using an artificial neural network does not exceed 1 minute when the calculation is
performed on a CPU. Transformations of maps from geographic coordinates to kilometer-based
ones and back were carried out using interpolation algorithms implemented in the open-source scipy
library [Virtanen et al., 2020].

The series in Fig. 6 a — 6 b show the true field components B .and B ,, obtained from the

EMM model, the reconstructed components B ,=and B ,~using an artificial neural network, as



well as the difference between the true and reconstructed components of the anomalous magnetic
field. Thus, for the component B ., the residual function takes the value L = 0.0931, for the

component B ,, the residual function takes the value L = 0.0252.

In the area of highest intensity of magnetic anomalies, |B“‘| = 1642 nT, |B"| = 1853 nT, the
error takes values of 170 nT and 98 nT respectively. In the high-latitude region, the error for the
component B ,is the greatest, as shown in Fig. 6 a . This may be due to the large extent of the
anomalies themselves in this area, about 400 px as shown in Fig. 5b, compared to the extent of the
neural network input image, 40 px.

5. CONCLUSION

In this work, a model of an artificial neural network was developed to reconstruct the vector
anomalous magnetic field based on the vertical component field data. The neural network includes a
dense input layer for preliminary rough calculation, the results of which are further refined using a
convolutional neural network. The developed neural network was trained on data created using a
random distribution of fictitious point magnetic dipoles, which were used to model the anomalous
magnetic field above the Earth's surface.

The neural network showed on average better results when compared with a known numerical
scheme for reconstructing magnetic field components in the plane. The trained neural network
reconstructs the field components with smaller edge errors for cases when the magnetic anomaly
does not entirely fit within the target area. The neural network also showed resistance to noise in the
input data.

The results of vector field reconstruction based on IGRF and EMM model data demonstrated
high performance of the neural network with large volumes of input data. Currently, work is

underway to further test and improve the neural network model.
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Figure Captions

Fig. 1. Schematic representation of the artificial neural network architecture for reconstructing B .-
and B ,-components of the anomalous magnetic field from the known vertical B ,-component.

Fig. 2. The value of the discrepancy function for the training data series and validation data series as
a function of the epoch number during the artificial neural network training process

Fig. 3. Results of reconstructing the horizontal components B .and B ,( a — b ) using the numerical
algorithm and ( ¢ — d ) using the trained artificial neural network.

Fig. 4. Results of reconstructing the horizontal components B .and B ,( a ) from noisy data of the
component B ,, ( b)) using the trained artificial neural network and ( ¢ ) using the numerical
algorithm.

Fig. 5. The studied area in which ( @ ) the anomalous magnetic field was selected and ( b ) the
distribution of the vertical component B ,over the studied area.

Fig. 6. The original anomalous magnetic field, the reconstructed anomalous magnetic field using the
trained artificial neural network, and the difference between the original and reconstructed
components (a ) B .and (b) B,.



X. U components

A0x40

Famous 7 component Preliminary rude Finite result



Function

0,01

Educational samole
Walidating

samole

1E-3

Fig. 2.

Fig. 3.

p ]

05

(00 »wird) g



Meural
=

Fig. 5.

I e L, I
G0"E &5°E TO"E TS°E 80
=10 @ 100
B (HTR)

J:l-.-.--'
"E BS°E
&0

(‘ed -atfitude) ™



B'E TSE BI'E BA°E
20 =1 R
B tulny

L =0.0252

e

60°E G5°E TO'E T5°E BI"E B5'E

-ia 1 F]
B (=Tr]




