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Absctract. In this work, artificial neural networks were used to solve the problem of recovering the 

vector anomalous magnetic field from one-component data. To train the artificial neural network, a 

database of anomalous magnetic field components xB  , yB  , zB  was created using a set of point 

magnetic dipoles located beneath the field measurement plane. The performance of the trained 

neural network was demonstrated on a synthetic example in comparison with a known numerical 

algorithm for recovering the vector field from single-component data. Furthermore, using data from 

the vertical component of the anomalous geomagnetic field, artificial neural networks were used to 

recover the horizontal components of the anomalous geomagnetic field in the territory of 58 – 85º E, 

52º – 74º N with a grid step of 2 angular minutes.  
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1. INTRODUCTION  

 Vector anomalous magnetic field models are widely used for geophysics, navigation, and 

directional drilling tasks [Buchanan et al., 2013; Kaji et al., 2019]. However, the amount of modular 

anomalous field data exceeds the number of vector measurements. Therefore, to obtain a high-

precision model of the vector magnetic field, special methods are used to calculate the vector 

anomalous magnetic field from known one-component anomalous magnetic field data.  

 Examples of such methods are the magnetic potential method [Lourenco and Morrison, 

1973; Kolesova and Cherkaeva, 1987] and the magnetic dipole method [Montesinos et al., 2016; 

Kaftan, 2017]. In the magnetic potential method, the field components are described by double 

Fourier series, the coefficients of which are connected through the potential of the anomalous 

magnetic field. However, this method requires that the magnetic anomaly be completely within the 

measurement area [Lourenco and Morrison, 1973; Kolesova and Cherkaeva, 1987]. Using the dipole 

method, the desired vector field is calculated based on the known component of the anomalous field, 

using a set of fictitious point dipoles, the positions of which are selected by trial and error under the 

scanning plane of the anomalous field. However, the processing time of the dipole method increases 

rapidly with an increase in the number of dipoles and measurement points of the anomalous 

magnetic field.  

 For fast processing of large volumes of digital images, the use of artificial neural networks is 

effective. Artificial neural networks are widely used for applications in computer vision and image 

classification [Krizhevsky et al., 2012]. Neural networks trained on data about physical processes 

have been used for modeling magnetic fields, as well as for interpolation and extension of magnetic 

fields measured on a sparse grid [Coskun et al., 2022; Pollok et al., 2021; Pollok et al., 2023]. In 

some cases, a trained neural network shows higher accuracy compared to traditional numerical 

algorithms [Coskun et al., 2022; Pollok et al., 2021].  

 In this paper, a new method for reconstructing the vector magnetic field using artificial 

neural networks is proposed. The neural network takes as input the vertical  -component of the 

anomalous field with a dimension of 40×40 pixels, and then reconstructs the components in the  

and  plane. For training the developed neural network, a database containing 50,000 random 

anomalous magnetic fields was created, which were obtained using the total field of point magnetic 

dipoles. A comparison was made between the developed neural network and a known numerical 

method for vector field reconstruction [Lourenco and Morrison, 1973; Kolesova and Cherkaeva, 

1987]. The performance of the neural network was also verified using data of the vertical 



component of the anomalous field obtained from the IGRF-13 [Alken et al., 2021] and EMM2017 

[Maus, 2010; The National Centers for Environmental Information, 2018] models in the territory of 

58 – 85º E, 52 – 74º N with a grid step of 2 angular minutes.  

  

2. METHOD DESCRIPTION  

2.1. Neural Network Architecture  

The scheme of the developed artificial neural network is shown in Fig. 1. The known 

distribution of the vertical component of the anomalous field B z with dimensions of 40 × 40 pixels is 

fed to the input of the neural network. For preliminary rough calculation, a dense neural network is 

used, containing an input layer, an internal layer, and an output layer with a dimension of 40×40 

neurons. Then, the results of the rough calculation of the anomalous field components are fed to the 

input of the refining neural network. Refinement occurs using a convolutional neural network with 

an input layer, an output layer, and two internal layers containing 40×40 neurons. A linear activation 

function of neurons was used in the developed model.  

Fig. 1.  

The neural network was implemented using the tensorflow library [Abadi et al., 2016]. The 

choice of the tensorflow library is justified by high performance, flexibility, and ease of neural 

network development. The stochastic gradient descent algorithm Adam [Kingma et al., 2014] was 

used for training the neural network.  

To train a neural network and further assess the accuracy of magnetic field reconstruction, it is 

necessary to define a residual function. There are many known residual functions, some of which are 

implemented in the tensorflow package, such as mean square deviation, mean absolute deviation, 

etc. There are also more advanced functions, for example, the PE -function [Barkhatov et al., 2017]. 

The choice of a specific residual function for training a neural network depends on the type of input 

data and can be selected experimentally. In this work, for simplicity, the mean square error function 

was chosen in the form  
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where  − known field at point i ,  − reconstructed field at point i ,  − mean square of 

the known anomalous field, N – total number of measurement points.  
  



The training database consists of 50,000 random components of the anomalous magnetic field 

 ,  ,  , of which 45,000 components were used for training the artificial neural network, and 

5,000 components were used for validating the neural network training process. During training, the 

residual reached values of L < 4∙10 -3 .  

  

2.2. Direct modeling of the anomalous field  

Point dipoles were used to model the anomalous magnetic field, as the magnetic field of a 

magnetized body at distances exceeding its dimensions is equivalent to the field of a point dipole. 

The field of a point magnetic dipole is determined by the well-known formula [Yanovsky, 1978]  
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where  – vector from the dipole location to the measurement point,  − magnetic moment 

of the dipole in the Cartesian coordinate system. The anomalous magnetic field is modeled using a 

random distribution of 1 – 400 point magnetic dipoles. The components of the anomalous magnetic 

field are then calculated in a plane at some height above the point dipoles and entered into the 

database. The numerical values of the anomalous field components are normalized so that they lie in 

the range [-1, 1].  

  

2.3. Neural Network Training  

The training of the developed neural network was conducted on a personal computer with an 

Intel Core i7-9700 processor and an NVIDIA GeForce GTX 950 graphics card. In order to utilize the 

2 GB of free graphics card memory, the input data for training, with a total size of just over 2 GB, 

was divided into equal parts of 1 GB each. Further training was conducted on each data series until 

the validation set error became greater than the training set error. An example of the error function 

dynamics graph during training on a logarithmic scale is shown in Fig. 2.  

Fig. 2.  

Fig. 2 shows the process of decreasing the error function value for the training data and for the 

validation data. To avoid overfitting of the neural network, the training process was stopped if the 

validation set error began to increase relative to the training set error [Ying, 2019]. This moment is 

indicated by an arrow in Fig. 2, corresponding to approximately epoch number 80.  

  



3. SYNTHETIC EXAMPLE  

The trained neural network was tested using test anomalous magnetic fields that were not 

included in the general database during the training process. Fig. 3 shows the result of the trained 

neural network operation for a specific example in comparison with the numerical algorithm for 

reconstructing horizontal components of the anomalous magnetic field, which is described in detail 

in [Lourenco and Morrison, 1973].  

Fig. 3.  

Fig. 3 a - 3 b shows the results of reconstructing the horizontal components B x and B y of the 

anomalous field from the vertical B z -component data using a numerical algorithm. Figures 3 c - 3 d 

demonstrate the results of the trained neural network for the same input data. The series in Fig. 3 

show the original components B x and B y , the reconstructed components B x 
recon. and B y 

recon. , as well as 

the difference between the original and reconstructed components of the magnetic field obtained 

using the numerical algorithm and the artificial neural network.  

 Figure 3 shows that in the case of the numerical algorithm, the residual calculated using 

formula (1) takes values L = 0.1067 and L = 0.1606 for components B x and B y respectively. For the 

neural network results, the error takes values L = 0.0031 and L = 0.0018 for components B x and B y 

respectively. Figures 3 a – 3 b show that in the case of the numerical algorithm, the main 

contribution to the error comes from edge effects, which are absent in the neural network results, as 

shown in Fig. 3 c – 3 d . Edge effects occur when a magnetic anomaly does not fit entirely within 

the study area [Lourenco and Morrison, 1973; Kolesova and Cherkaeva, 1987].  

To reduce the overall residual, the outer 10 px of each image are removed, and the residual is 

calculated in a 20×20 px area shown in Fig. 3. In this case, for the numerical algorithm, the residual 

takes values L = 0.0082 and L = 0.0112 for components B x and B y respectively, and in the case of 

the trained neural network, the residual is L = 4.2∙10 -4 and L = 2.7∙10 -4 for components B x and B y 

respectively.  

Furthermore, a comparison was made of the average residual between the numerical algorithm 

results and the trained neural network on 1000 random distributions of anomalous magnetic field 

that were not included in the database during neural network training. The sample also included 

cases where the magnetic anomaly does not fit entirely within the considered area. The residual was 

calculated both for the entire 40×40 px image and for 20×20 px images without edge pixels. The 

results of this comparison are shown in Table 1.  

Table 1.  



The results presented in Table 1 show that the artificial neural network on average has better 

accuracy in terms of the residual function (1) compared to the known numerical algorithm. If we 

also take into account the influence of edge effects and discard 10 pixels from each edge of the 

image, the accuracy of the vector field reconstruction increases significantly for both methods, but 

even in this case, the neural network shows somewhat better results.  

3.1. The effect of noise  

Next, the artificial neural network performance was tested on noisy data. The test results are 

shown in Fig. 4.  

Fig. 4.  

To simulate white noise, a random number in the range [-0.5, 0.5] was added to the value of 

each pixel of the vertical component B z , as shown in Fig. 4 a . The true in-plane components, B x and 

B y , are also shown here. From the given noisy component B z , the in-plane components B x and B y 

were reconstructed using the artificial neural network, Fig. 4 b , and using the numerical algorithm, 

Fig. 4 c .  

 The difference between the true components and the reconstructed ones is shown in Fig. 4 b 

for the artificial neural network and in Fig. 4 c for the numerical algorithm. In the case of the neural 

network, the residual takes values L = 0.0578 for the B x component and L = 0.0464 for the B y 

component. For the numerical algorithm, the residual takes values L = 0.4613 for the B x component 

and L = 0.6579 for the B y component.  

 Further, as in the previous section, a comparison was made of the average residual of the 

results of the numerical algorithm and the trained neural network on 1000 random noisy 

distributions of the vertical component of the anomalous magnetic field. The residual was also 

calculated both for the entire 40×40 px image and for images without edge pixels, 20×20 px. The 

results of this comparison are shown in Table 2.  

Table 2.  

The results shown in Table 2 demonstrate that the artificial neural network on average shows 

better resistance to noise in the input data. Thus, in the case of the numerical algorithm, the average 

discrepancy for B x -and B y -components of the anomalous field is L = 0.7493 and L = 0.8122 

respectively. For the artificial neural network, the average discrepancy for B x -and B y -components 

of the anomalous field is L = 0.0733 and L = 0.0680 respectively. If we discard the edge pixels, then 

for the numerical algorithm, the discrepancy takes values L = 0.1496 and L = 0.1895 for components 

B x and B y respectively, and for the artificial neural network the discrepancy takes values L = 0.0122 

and L = 0.0126 for components B x and B y respectively.  



4. CALCULATION OF ANOMALOUS GEOMAGNETIC FIELD COMPONENTS FROM 

VERTICAL COMPONENT DATA  

 The artificial neural network was tested on a large volume of anomalous geomagnetic field 

data. Using the IGRF-13 and EMM2017 models, data of the vertical component of the anomalous 

field at an altitude of 4 km were obtained over the area 58 – 85º E, 52 – 74º N with a grid step of 2 

angular minutes, as shown in Fig. 5.  

Fig. 5.  

The data of the main geomagnetic field generated by currents in the Earth's core were obtained 

from the IGRF-13 model. The data of the total geomagnetic field were obtained from the EMM2017 

model. The EMM2017 model allows obtaining both the main magnetic field and the field of 

magnetic anomalies created by rocks in the Earth's crust with an accuracy of up to 51 km [The 

National Centers for Environmental Information, 2018]. To obtain specifically the anomalous 

magnetic field, the difference between the data of the total field model EMM2017 and the main field 

IGRF-13 was calculated. The calculation was carried out using the following parameters: year 2020, 

altitude 4 km above sea level, longitude 58 – 85º E with a step of 0.03 degrees, latitude 52 – 74º N 

with a step of 0.03 degrees. The results of reconstructing the components of the anomalous magnetic 

field in the plane are shown in Fig. 6.  

Fig. 6.  

The anomalous field on the geographic coordinate grid was transformed into a uniform 

kilometer grid with a distance of 2 km between adjacent points, totaling 1386×1286 points. For 

image processing using an artificial neural network, the resulting vertical component map was 

randomly divided into 50,000 overlapping sections of 40×40 pixels each.  

Then each section was processed using a neural network, and to reduce the influence of edge 

effects, 10 edge pixels of each image were removed. Finally, from small sections of 20×20 pixels 

containing data on the reconstructed components B x and B y of the anomalous magnetic field, maps 

of the anomalous magnetic field of the original size were formed.  

The calculation was performed on a personal computer; the processing time for 50,000 images 

of 40×40 pixels using an artificial neural network does not exceed 1 minute when the calculation is 

performed on a CPU. Transformations of maps from geographic coordinates to kilometer-based 

ones and back were carried out using interpolation algorithms implemented in the open-source scipy 

library [Virtanen et al., 2020].  

The series in Fig. 6 a – 6 b show the true field components B x and B y , obtained from the 

EMM model, the reconstructed components B x 
reconst. and B y 

reconst using an artificial neural network, as 



well as the difference between the true and reconstructed components of the anomalous magnetic 

field. Thus, for the component B x , the residual function takes the value L = 0.0931, for the 

component B y , the residual function takes the value L = 0.0252.  

In the area of highest intensity of magnetic anomalies,  = 1642 nT,  = 1853 nT, the 

error takes values of 170 nT and 98 nT respectively. In the high-latitude region, the error for the 

component B x is the greatest, as shown in Fig. 6 a . This may be due to the large extent of the 

anomalies themselves in this area, about 400 px as shown in Fig. 5b, compared to the extent of the 

neural network input image, 40 px.  

5. CONCLUSION  

In this work, a model of an artificial neural network was developed to reconstruct the vector 

anomalous magnetic field based on the vertical component field data. The neural network includes a 

dense input layer for preliminary rough calculation, the results of which are further refined using a 

convolutional neural network. The developed neural network was trained on data created using a 

random distribution of fictitious point magnetic dipoles, which were used to model the anomalous 

magnetic field above the Earth's surface.  

The neural network showed on average better results when compared with a known numerical 

scheme for reconstructing magnetic field components in the plane. The trained neural network 

reconstructs the field components with smaller edge errors for cases when the magnetic anomaly 

does not entirely fit within the target area. The neural network also showed resistance to noise in the 

input data.  

 The results of vector field reconstruction based on IGRF and EMM model data demonstrated 

high performance of the neural network with large volumes of input data. Currently, work is 

underway to further test and improve the neural network model.  
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Table 1. Average discrepancy for reconstructed components of the anomalous magnetic field in the 
plane using a numerical algorithm and trained artificial neural network.  

Output  
image  
size  

B x (num. 
algorithm)  

B y (num. 
algorithm)  

B x (neural 
network)  

B y (neural 
network)  

40×40 px  L = 0.1068  L = 0.1058  L = 0.0271  L = 0.0269  

20×20 px  L = 0.0125  L = 0.0125  L = 0.0069  L = 0.0071  

  

  

Table 2. Average discrepancy for reconstructed components of the anomalous magnetic field in the 
plane from noisy data using a numerical algorithm and trained artificial neural network.  

Image  
Size  

at Output  

B x (num. 
algorithm)  

B y (num. 
algorithm)  

B x (neural 
network)  

B y (neural 
network)  

40×40 px  L = 0.7493  L = 0.8122  L = 0.0733  L = 0.0680  

20×20 px  L = 0.1496  L = 0.1895  L = 0.0122  L = 0.0126  
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Figure Captions  

  

Fig. 1. Schematic representation of the artificial neural network architecture for reconstructing B x -
and B y -components of the anomalous magnetic field from the known vertical B z -component.  

  

Fig. 2. The value of the discrepancy function for the training data series and validation data series as 
a function of the epoch number during the artificial neural network training process  

  

Fig. 3. Results of reconstructing the horizontal components B x and B y ( a – b ) using the numerical 
algorithm and ( c – d ) using the trained artificial neural network.  

Fig. 4. Results of reconstructing the horizontal components B x and B y ( a ) from noisy data of the 
component B z , ( b ) using the trained artificial neural network and ( c ) using the numerical 
algorithm.  

  

Fig. 5. The studied area in which ( a ) the anomalous magnetic field was selected and ( b ) the 
distribution of the vertical component B z over the studied area.  

  

Fig. 6. The original anomalous magnetic field, the reconstructed anomalous magnetic field using the 
trained artificial neural network, and the difference between the original and reconstructed 
components ( a ) B x and ( b ) B y .  

  



 

Fig. 1.  

  



 
  
  
  

Fig. 2.  
  
  
  
  

  

 
  

  

Fig. 3.  

  



 

  

Fig. 4.  

  

 

  
  

Fig. 5.  
  
  
  



 

  

Fig. 6.  

 


