УДК 524.1.352; 523.62-726; 550.385.4

НИЗКОТЕМПЕРАТУРНЫЕ ПЕРИОДЫ В СОЛНЕЧНОМ ВЕТРЕ И ФОРБУШ-ПОНИЖЕНИЯ: СТАТИСТИЧЕСКОЕ СРАВНЕНИЕ*

© 2024 г. А. А. Мелкумян¹, Н. С. Шлык¹, А. В. Белов¹, М. А. Абунина^{1, *}, А. А. Абунин¹, В. А. Оленева¹, В. Г. Янке¹

¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В.Пушкова РАН (ИЗМИРАН), Москва, Троицк, Россия

*e-mail: abunina@izmiran.ru

Поступила в редакцию 01.03.2024 г. После доработки 10.04.2024 г. Принята к публикации 23.05.2024 г.

На основе большого экспериментального материала проводилось сопоставление почасовых значений протонной температуры и скорости солнечного ветра, вычислялась ожидаемая протонная температура и температурный индекс – отношение наблюдаемой температуры к ожидаемой. С использованием базы данных вариаций космических лучей, с 1997 по 2022 гг. были выделены низкотемпературные периоды – интервалы длительностью более 2 ч, в которых почасовые значения температурного индекса не превышают 0.5. В работе исследовались: а) статистические связи между параметрами низкотемпературных периодов и характеристиками Форбуш-понижений, связанных с разными типами солнечных источников; б) распределения параметров низкотемпературных периодов для межпланетных возмущений, содержащих или не содержащих магнитное облако. Полученные результаты показали, что с ростом длительности низкотемпературного периода доля событий, связанных с выбросами из активных областей, растет, а доля рекуррентных событий и событий, связанных с выбросами вне активных областей, уменьшается. Корреляция параметров низкотемпературных периодов с амплитудой Форбуш-понижения слабая, с экваториальной анизотропией космических лучей — умеренная, с северо-южной анизотропией — значительная. Скорость солнечного ветра и величина магнитного поля умеренно коррелируют с температурным индексом, а корреляция размаха этих параметров с длительностью низкотемпературных периодов значительная или сильная.

Ключевые слова: Форбуш-понижения, солнечный ветер, межпланетные возмущения, космические лучи.

DOI: 10.31857/S0016794024050029, EDN: QRNHEZ

1. ВВЕДЕНИЕ

Существование статистической взаимосвязи между протонной температурой и скоростью солнечного ветра (СВ) было впервые отмечено в Neugebauer and Snyder [1966]. Положительная корреляция температуры и скорости СВ отмечалась многими авторами, которые предлагали различные формулы для расчета T-V зависимости [Burlaga and Ogilvie, 1970; Lopez, 1986, 1987; Neugebauer et al., 2003; Elliot et al., 2005, 2012]. В то же время во многих работах было отмечено отсутствие корреляции между температурой и скоростью СВ и аномально низкие значения

температуры внутри межпланетных корональных выбросов массы (*Interplanetary Coronal Mass Ejection* — ICME) [Gosling, 1973; Richardson and Cane, 1995a; Neugebauer et al., 2003; Elliot et al., 2005]. Richardson and Cane [1995a], выбирая интервалы времени с аномально низкой протонной температурой, проанализировали их связь с ICMEs и ввели понятие температурного коэффициента $KT = T_{obs}/T_{exp}$, где T_{obs} — наблюдаемая протонная температура, T_{exp} — ожидаемая протонная температура, рассчитываемая по значениям скорости CB. Было показано, что понижение протонной температуры (KT < 0.5) является наиболее надежным признаком ICME. Объяснения, почему значимая T - V корреляция исчезает в ICME и почему протонная температура суще-

[#] Дополнительные материалы размещены в электронном виде по DOI статьи: https://doi.org/10.31857/S0016794024050029

ственно ниже в ІСМЕ, чем в спокойном СВ, были предложены в Gosling [1973]. Matthaeus, Elliot and McComas [2006], Demouline [2009]. Долговременные и радиальные (с расстоянием от Солнца) изменения T - V зависимости исследовались в Lopez [1987], Richardson and Cane [1995b], Elliot et al. [2012], Elliot, McComas and DeForest [2016]. Используя большой массив данных (более 300 000 почасовых значений скорости и температуры СВ. начиная с 1965 г.), Мелкумян и др. [2020] и Melkumyan et al. [2021] получили новые формулы T - V зависимости для спокойного CB и показали, что минимальные значения температурного индекса $KT = T_{obs}/T_{exp}$ связаны с ICMEs, характеризующимися наличием такой структуры, как магнитное облако (MO) [Burlaga et al., 1981; 1982], а максимальные значения — с областями взаимодействия высокоскоростных потоков из корональных дыр и спокойного СВ.

В данной работе для исследования были выбраны интервалы времени >2 ч, в которых температурный индекс принимает значения $KT \le 0.5$ (низкотемпературные периоды — $HT\Pi$), и исследовались их особенности как в целом, так и в случае привязки к МО и/или к Форбуш-понижениям ($\Phi\Pi$). $\Phi\Pi$ называют изменение плотности и анизотропии космических лучей (КЛ) в крупномасштабных возмущениях СВ; во время ФП интенсивность галактических КЛ относительно быстро убывает, а за понижением следует более медленное восстановление [Forbush, 1937; Lockwood, 1971; Iucci et al., 1979]. ФП часто сопровождаются повышенными значениями анизотропии КЛ [Belov et al., 2001, 2009]. По типу межпланетных источников $\Phi\Pi$ делятся на спорадические, вызванные ICMEs [Cane, 2000], и рекуррентные, вызванные высокоскоростными потоками плазмы из корональных дыр [Richardson, 2004]. В настоящей работе, спорадические события делятся на $\Phi\Pi$, связанные с корональными выбросами массы (Coronal Mass Ejection — СМЕ) из активных областей (АО), сопровождавшимися солнечными вспышками, и $\Phi\Pi$, вызванные волоконными выбросами вне АО. Разница в свойствах этих двух типов событий показана, например, в Gopalswamy et al. [2010a], Melkumyan et al. [2022]. Кроме того, рассматриваются так называемые смешанные события, вызванные двумя и более межпланетными возмущениями [Шлык и др., 2021; Shlyk et al., 2022].

Цель настоящей работы — проанализировать, насколько часто в СВ наблюдаются НТП, чем кроме низкой температуры они отличаются от остальных периодов, и как они связаны с ІСМЕ, МО, ФП и периодами повышенной геомагнитной активности. В работе исследуются свойства

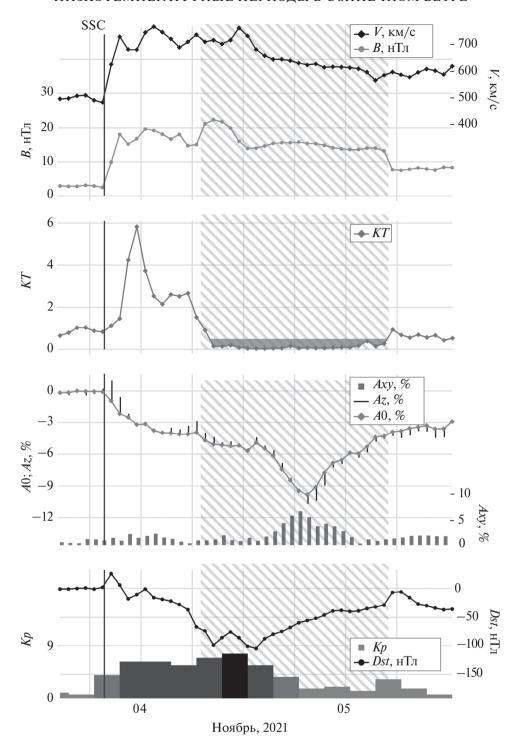
и характеристики НТП в различных группах событий, в частности, сравнение проводится для межпланетных возмущений, характеризующихся наличием или отсутствием МО у орбиты Земли, а также для ФП, связанных с разными типами солнечных источников. Большой объем используемых данных (с января 1997 по декабрь 2022 г.) позволяет использовать статистические методы для исследования поведения параметров НТП.

2. ДАННЫЕ И МЕТОДЫ

Для вычисления ожидаемой протонной темпе-использовались почасовые параметры межпланетной среды, взятые из базы данных OMNI [King and Papitashvili, 2005; http://omniweb.gsfc.nasa. gov/ow.html]. Для невозмущенного СВ по значениям протонной температуры и скорости строились модели линейной регрессии, с помощью которых вычислялись почасовые значения ожидаемой температуры T_{exp} и температурного индекса KTдля всего исследуемого интервала времени. Критерии выделения невозмущенного СВ, а также алгоритм построения регрессионных моделей, выбор оптимальной модели и вычисление почасовых значений T_{exp} и KT описаны подробно в работах Мелкумян й др. [2020] и Melkumyan et al. [2021]. Здесь отметим, что по результатам вышеупомянутых исследований лучшей моделью для невозмущенного СВ оказалась степенная модель вида $\log T = a + b \log V$ с коэффициентами $a = -3.745 \pm 0.001$, $b = 3.29 \pm 0.02$ для V < 425 км/с и $a = -1.016 \pm 0.001$, $b = 2.25 \pm 0.02$ для $V \ge 425$ км/с. Именно в соответствии с ними и рассчитывались значения параметров T_{exp} и KT. Йнформация об НТП, выделенных по результатам расчетов, приведена по ссылке (http://spaceweather.izmiran.ru/ papers/2024/LowTempInterv list 1965 2022.txt). Все параметры вариаций КЛ рассчитывались методом глобальной съемки для частиц жесткостью 10 ГВ [Белов и др., 2018]. В настоящей работе используются данные с января 1997 г., так как в используемых базах данных содержится непрерывная почасовая информация о параметрах СВ с этого времени.

С помощью созданной и поддерживаемой в ИЗМИРАН базы данных Форбуш-эффектов и межпланетных возмущений (Forbush Effects and Interplanetary Disturbances — FEID) (https://tools.izmiran.ru/w/feid) https://tools.izmiran.ru/feid часть НТП была идентифицирована с ФП, связанными с разными типами солнечных и межпланетных источников. Для привязки ФП к солнечному источнику в базе данных FEID проводился комплексный анализ вариаций КЛ,

межпланетных и солнечных данных, описанный в работах Мелкумян и др. [2018]. Melkumyan et al. [2022]. Использованные списки МО взяты из статей [Huttunen et al., 2005; Lynch et al., 2003, 2005; Marubashi and Lepping, 2007; Ермолаев и др., 2009; Gopalswamy et al., 2010b; Kim et al., 2013; Richardson and Cane, 2010] и онлайн-каталогов (https://wind. nasa.gov/mfi/mag cloud pub1.html, http://www.iki. rssi.ru/omni/catalog/, https://wind.nasa.gov/mfi/ mag cloud S1.html, https://cdaw.gsfc.nasa.gov/ meetings/2010 fluxrope/LWS CDAW2010 ICMEtbl.html, http://www.srl.caltech.edu/ACE/ ASC/DATA/level3/icmetable2.htm). Данные по геомагнитной активности (ГА) брались из (ftp:// ftp.gfz-potsdam.de/pub/home/obs/kp-ap/wdc/) [Matzka et al., 2021] и (http://wdc.kugi.kyoto-u. ac.jp/dstdir/index.html).


В настоящей работе каждый НТП рассматривается как независимое событие и характеризуется несколькими параметрами, во-первых, описывающими структуру НТП, и во-вторых, показывающими связь НТП с характеристиками СВ, КЛ и ГА. К первым относятся: а) длительность HTП в часах (Duration – DUR); б) средняя величина температурного индекса (KT); в) мощность (SUM) — сумма отклонений почасовых значений температурного индекса от 0.5. Ко вторым относятся: a) средние значения скорости CB(V), индукции межпланетного магнитного поля (ММП, B) и геомагнитных индексов (Dst, Ap); б) размах значений скорости СВ (VR), индукции ММП (BR) и вариаций плотности КЛ (CR). Связанные с НТП Форбуш-понижения характеризуются амплитудой (AF), максимальным значением экваториальной анизотропии КЛ (Аху) и размахом северо-южной анизотропии КЛ (Az). В работе исследуются и сравниваются для разных групп событий статистические распределения этих параметров и взаимосвязи между ними. Сравнение проводится для межпланетных возмущений, характеризующихся наличием или отсутствием МО у орбиты Земли, а также для ФП, связанных с разными типами солнечных источников.

Большое количество данных позволяет использовать статистические методы для анализа распределений параметров и связей между ними в разных группах событий, в том числе, в полной группе событий (группа FULL) и в группе событий, привязанных к ФП (группа FD). Исследуется также сходство и различие между событиями, вызванными разными типами источников: а) корональными выбросами массы (группа СМЕ); б) высокоскоростными потоками из корональных дыр (группа СН); в) несколькими источниками (группа МІХ). События, связанные с ICMEs, де-

лятся на две подгруппы: СМЕ1 (НТП, связанные с корональными выбросами из АО, сопровождаемыми солнечными вспышками) и СМЕ2 (НТП, связанные с волоконными выбросами вне АО). В работе также сравниваются НТП, связанные с ІСМЕs, при наличии или отсутствии МО у орбиты Земли. Для этого в группах FULL, FD, СМЕ, МІХ, СМЕ1, СМЕ2 выделяются события, характеризующиеся наличием или отсутствием МО.

Статистический подход к анализу данных предполагает, что свойства большого количества изучаемых объектов представляют доминирующие признаки индивидуального события. Для исследования распределений параметров и статистических связей между ними в разных группах событий: а) строились гистограммы, диаграммы размаха, диаграммы рассеяния и круговые диаграммы; б) вычислялись характеристики распределений (среднее значение, медиана, межквартильный интервал (Interquartile Range -IQR), размах, асимметрия), парные коэффициенты корреляции, кумулятивные функции распределения (*Cumulative Distribution Function* — CDF). Для сравнения коэффициентов корреляции вычислялись z-статистика и уровень значимости p; разница между двумя коэффициентами считалась статистически значимой при p < 0.05. Оценка силы корреляционной связи давалась по шкале Чеддока [Chaddock, 1925]: r < 0.3 -слабая, $0.3 \le r < 0.5$ — умеренная, $0.5 \le r < 0.7$ — значительная, $r \ge 0.7$ — сильная. Для оценки нормальности (логнормальности) распределений использовался критерий согласия Колмогорова-Смирнова: вычислялись значения статистики и уровень значимости р; гипотеза о нормальности (логнормальности) распределения принималась при p > 0.05. Логнормальное распределение описывает мультипликативные процессы, в которых изменение параметра под каким-либо внешним воздействием зависит от предыдущего значения этого параметра; нормальное распределение описывает процессы, в которых такая зависимость отсутствует.

На рис. 1 представлен пример из базы данных FEID, демонстрирующий НТП (залитая серым цветом область на второй панели), связанный с ФП, вызванным ICME с МО у орбиты Земли. Первая (верхняя) панель показывает индукцию ММП (левая шкала) и скорость СВ (правая шкала), на второй панели показано поведение температурного индекса, третья сверху панель показывает вариации плотности КЛ (кривая АО, левая шкала), изменение северо-южной компоненты анизотропии КЛ (вертикальные линии на кривой, Аz, левая шкала) и экваториальной составляющей анизотропии КЛ (столбики Аху, правая

Рис. 1. Пример $\Phi\Pi$ из группы CME+MC.

шкала), а на четвертой (нижней) панели изображено поведение геомагнитных *Кр*- и *Dst*-индексов. Вертикальной линией обозначается начало ФП, заштрихованный прямоугольник обозначает время прохождения МО. Данное событие связано с межпланетным возмущением, вызванным

солнечной вспышкой (М1.7 с координатами N14E01 в 01:20 UT 2 ноября 2021 г., АО 12891) и последовавшим корональным выбросом массы (в 02:48 UT с начальной скоростью 1473 км/с). 3 ноября 2021 г. в 19:42 UT было зарегистрировано SSC (Sudden Storm Commencement). В околозем-

ном космическом пространстве экстремальные значения параметров солнечного ветра составили: $V\max = 762 \text{ км/c}$, $B\max = 22.3 \text{ нТл}$, длительность $HT\Pi$ DUR = 21 ч, а мощность SUM = 2.05. Также в указанном возмущении наблюдалась структура МО продолжительностью 32 ч (с 07 UT 4 ноября по данным каталога (http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm). Величина $\Phi\Pi$ в событии составила AF = 9.8%, максимальная экваториальная составляющая анизотропии КЛ достигла значения $Axy\max = 6.77\%$, а разброс значений северо-южной составляющей анизотропии составил Azrange = 3.23%. Была зарегистрирована очень большая магнитная буря ($Kp\max = 8-$, $Dst\min = -105 \text{ нТл}$).

3.РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3. 1 Статистические свойства параметров НТП

Для интервала времени с января 1997 по декабрь 2022 г. были получены НТП ("события") длительностью >2 ч, имеющие почасовые значения температурного индекса <0.5 (группа FULL, N = 2359 событий). С помощью базы данных FEID, часть этих событий была привязана к ФП, для которых точно определен солнечный источник (группа FD, N = 1483). Большое количество исследуемого материала в табл. 1 позволяет провести статистический анализ параметров НТП как в целом, так и для отдельных групп событий, связанных с разными типами солнечных и межпланетных источников. Мы сравнили распределения параметров в группах FULL и FD, чтобы понять, насколько представительны будут результаты статистического анализа параметров НТП

в группах СМЕ, СН, MIX, СМЕ1, СМЕ2, включающих только события, связанные с $\Phi\Pi$ из базы данных FEID. Для групп FULL и FD в табл. 2 представлены характеристики распределений исследуемых параметров (среднее значение, медиана, межквартильный интервал, размах, асимметрия). Для примеров гистограмм выбраны параметры B и SUM, так как их распределения соответствуют логнормальному закону, и параметр KT, так как его распределение существенно отличается от распределений остальных параметров. Из соображений масштаба на рис. 2 не показаны значения B = 47.9 нТл (группы FULL и FD) и SUM = 3.64 (группа FULL). Для всех параметров, кроме KT, форма гистограмм и положительные значения коэффициента асимметрии показывают, что распределения характеризуются правосторонней асимметрией и "хвостами" в области больших значений в обеих группах событий. Проверка закона распределения каждого из параметров (с помощью критерия Колмогорова-Смирнова) показала, что распределения параметров B и SUM подчиняются логнормальному закону в группах FULL и FD, распределения остальных параметров не согласуются с нормальным или логнормальным законом ни в одной из двух групп событий. Необычная форма распределения и отрицательный коэффициент асимметрии для параметра KT связаны с тем, что значения этого параметра обрезаны сверху (KT < 0.5). Полное (необрезанное) распределение почасовых значений температурного индекса представлено в Melkumyan et al. [2021], где показано, что это распределение унимодальное, островершинное, имеет положительную асимметрию и длинный "хвост" в области больших значений.

Таблица 1. Количество событий в разных группах

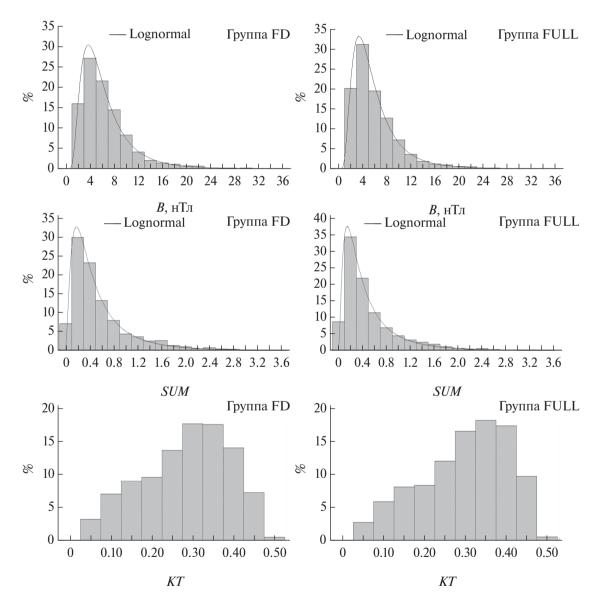
Группа	N	Группа	N	Группа	N
FULL	2359	FULL+MC	243	FULL-MC	2116
FD	1483	FD+MC	179	FD-MC	1304
CME1	262	CME1+MC	27	CME1-MC	235
CME2	500	CME2+MC	98	CME2-MC	402
MIX	572	MIX+MC	54	MIX-MC	518
СН	149	_	_	_	_

Примечание. FULL — общее количество исследуемых НТП; FD — события, привязанные к Форбуш-понижениям; CME1 — события, связанные с корональными выбросами массы из AO; CME2 — события, вызванные корональными выбросами массы вне AO; MIX — события с несколькими источниками; CH — события, связанные с высокоскоростными потоками из корональных дыр; FULL+MC, FD+MC, CME1+MC, CME2+MC, MIX+MC, FULL—MC, FD—MC, CME1—MC, CME2—MC, MIX—MC — события, характеризующиеся наличием или отсутствием магнитного облака в каждой группе.

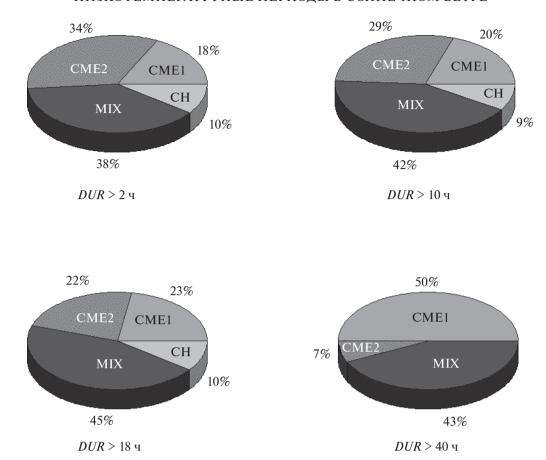
Таблица 2. Характеристики распределений параметров НТП в группах FULL и FD

Параметр	Группа	Среднее	Медиана	IQR	Min	Max	Асимметрия
DUR	FULL	8.2 ± 0.2	5.5	4-10	3	64	2.74
	FD	8.6 ± 0.2	6	4-10	3	59	2.57
KT	FULL	0.37 ± 0.00	0.39	0.32-0.43	0.08	0.50	-0.89
	FD	0.36 ± 0.00	0.37	0.31-0.42	0.08	0.50	-0.80
SUM	FULL	0.52 ± 0.01	0.35	0.18-0.66	0.01	3.64	2.22
	FD	0.57 ± 0.01	0.39	0.22-0.73	0.01	3.32	1.95
V	FULL	402 ± 2	382	341-437	244	1069	1.91
	FD	412 ± 2	393	348-446	244	1069	1.89
VR	FULL	26.8 ± 0.8	16	8-30	0	620	5.09
	FD	29.4 ± 1.1	17	9-32	0	620	5.14
В	FULL	5.93 ± 0.08	4.90	3.27-7.42	0.60	47.90	2.36
	FD	6.42 ± 0.11	5.46	3.57-8.11	1.15	47.90	2.36
BR	FULL	1.77 ± 0.05	1.1	0.5-2.1	0	41.4	6.48
	FD	1.93 ± 0.07	1.2	0.6-2.3	0	41.4	6.02
CR	FULL	0.38 ± 0.01	0.21	0.13-0.38	0.01	11.56	7.28
	FD	0.43 ± 0.02	0.24	0.14-0.43	0.01	11.56	6.93
Dst	FULL	-14.5 ± 0.6	-7	-21 - +1	-352	31	-3.29
	FD	-17.2 ± 0.8	-8	-25 - 0	-352	30	-3.19
Ap	FULL	10.3 ± 0.4	5	2–9	0	296	5.61
	FD	12.1 ± 0.5	5	3-12	0	296	5.09

Примечание. DUR (Duration) — длительность НТП в часах; KT — средняя величина температурного индекса; SUM — сумма отклонений почасовых значений температурного индекса от 0.5; V — средние значения скорости CB; B — индукция ММП; Dst, Ap — индексы геомагнитный активности; VR — размах значений скорости CB; BR — размах значений индукции ММП; CR — размах значений вариаций плотности $K\Pi$.


Сравнение статистических характеристик каждого из параметров в группах FULL и FD не показало наличие значимых различий между двумя группами; можно считать, что это две выборки из одной и той же генеральной совокупности. Таким образом, все сделанные ниже выводы о свойствах НТП, связанных с разными типами солнечных и межпланетных источников, можно распространить также на события, не связанные с ФП из базы данных FEID.

3.2. $HT\Pi$ и $\Phi\Pi$, связанные с солнечными источниками разных типов


Количество НТП, рассматриваемых в настоящей работе, отличается для разных типов солнечных источников (табл. 1). С корональными выбросами из АО, сопровождаемыми солнечными вспышками, связаны 18~% всех привязанных к ФП событий, с волоконными выбросами вне АО -34~%, с высокоскоростными потоками из корональных дыр -10~% и с несколькими источ-

никами — 38 %. Как показано на рис. 3, с увеличением длительности НТП количество событий в различных группах меняется по-разному. С ростом длительности НТП, доля событий, связанных с корональными выбросами, сначала убывает, а потом возрастает (группа СМЕ: 53 % при DUR > 2 ч, 49 % при DUR > 10 ч, 45 % при DUR > 18 ч, 57 % при DUR > 40 ч). При этом, доля событий, связанных с СМЕs из AO, растет, а доля событий, связанных с волоконными выбросами вне AO, уменьшается (см. рис. 3). Хотя изначально количество НТП, связанных с волоконными выбросами вне AO, почти в два раза больше, чем

количество НТП, связанных с СМЕѕ из АО, для продолжительных НТП (*DUR* > 18 ч) количество "волоконных" и "вспышечных" событий практически одинаково, а для очень длительных НТП количество событий в группе СМЕ1 существенно больше, чем в группе СМЕ2. Таким образом, с ростом длительности НТП происходит "перераспределение" связанных с ІСМЕ событий в пользу СМЕѕ из АО. По-видимому, частично это может быть объяснено тем фактом, что в более медленных "волоконных" СМЕѕ регистрируемая у Земли протонная температура оказывается выше из-за длительного взаимодействия со спо-

Рис. 2. Гистограммы параметров *SUM, B, KT* в группах FULL и FD (из соображений масштаба не показаны значения SUM = 3.64 в группа FULL, B = 47.9 нТл в обеих группах).

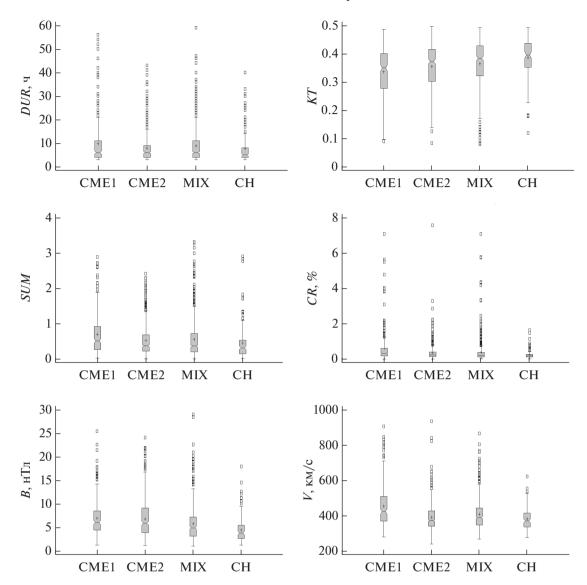


Рис. 3. Доля событий, связанных с солнечными источниками разных типов, при длительности $HT\Pi > 2$ ч, 10 ч, 18 ч и 40 ч.

койным (фоновым) СВ. С ростом длительности НТП доля смешанных событий слабо возрастает, а доля связанных с НТП рекуррентных событий сначала почти не меняется, а потом резко падает. При очень большой продолжительности НТП рекуррентные ФП вообще не наблюдаются. Отсутствие длительных НТП в таких событиях не удивительно, поскольку рекуррентные ФП вызваны высокоскоростными потоками из корональных дыр, одной из основных характеристик которых является высокая температура (напр., [Bothmer and Zhukov, 2007]).

Нами были посчитаны характеристики распределений параметров НТП в группах СМЕ, СН, МІХ, СМЕ1, СМЕ2, доступ по ссылке (http://spaceweather.izmiran.ru/papers/2024/appendix_123. pdf) см. Приложение 1. На рис. 4 представлены диаграммы размаха параметров для тех же групп событий (кроме группы СМЕ). Из соображений масштаба на рис. 4 не показаны значения B=47.90 нТл, B=33.53 нТл, B=30.78 нТл, V=1069 км/с в группе СМЕ1 и CR=11.58 %

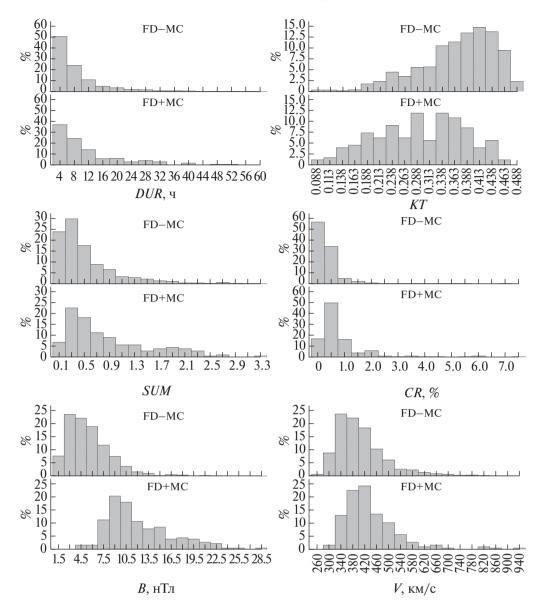
в группе MIX. За исключением скорости СВ в группе СН, распределения всех параметров, кроме KT, во всех группах событий характеризуются положительной асимметрией и "хвостами" в области больших значений. Распределения температурного индекса во всех группах событий отличаются от распределений остальных параметров очень большой шириной (значения коэффициента эксцесса: от -0.04 в группе СМЕ2 до 1.14 в группе СН) и левосторонней асимметрией (значения коэффициента асимметрии: от -0.52в группе CME1 до -1.03 в группе CH). Как уже упоминалось выше, такая форма распределений связана с выборкой исследуемых событий по критерию KT < 0.5. Что касается скорости CB в группе СН, в работе Мелкумян и др. [2018] показано, что для ФП, связанных с высокоскоростными потоками из корональных дыр, распределение максимальной (в течение ФП) скорости СВ почти симметричное и близкое к нормальному закону. В настоящей работе распределение средней (в течение НТП) скорости СВ в группе СН также характеризуется сравнительно малыми значениями

Рис. 4. Диаграммы размаха параметров *DUR*, *KT*, *SUM*, *CR*, *B*, *V* в группах CME1, CME2, MIX и CH (из соображений масштаба не показаны значения B = 47.90 нТл, B = 33.53 нТл, B = 30.78 нТл, V = 1069 км/с в группе CME1 и CR = 11.58 % в группе MIX).

асимметрии (0.92) и эксцесса (0.91), заметно отличаясь как от распределений других параметров, так и от распределений параметра V в других группах событий. Последнее можно объяснить тем, что низкие скорости в высокоскоростных потоках из корональных дыр наблюдаются достаточно редко, так как для их наблюдения нужна еще более низкая скорость фонового CB, в то время как в ICMEs они наблюдаются значительно чаще, формируя сдвиг распределения в сторону низких значений.

Для разных групп событий были рассчитаны значения парных коэффициентов корреляции параметров DUR, KT, SUM между собой и с харак-

теристиками СВ, КЛ, ГА и ФП, доступ по ссылке (http://spaceweather.izmiran.ru/papers/2024/appendix_123.pdf), см. Приложение 2. Для параметра AF во всех группах событий корреляция с параметрами DUR, KT, SUM оказалась слабая или статистически незначимая. В то же время корреляция параметров DUR, KT, SUM с максимальными значениями экваториальной анизотропии КЛ (Axy) умеренная, а с размахом североюжной анизотропии КЛ (Az) значительная. Амплитуда ФП определяется не только той частью межпланетного возмущения, в которой были зарегистрированы низкие значения температурного индекса. Очень часто, минимум плотности


КЛ наблюдается еще до входа Земли в область низкой температуры. Поэтому параметр AF слабее связан с характеристиками НТП, чем параметр CR, определяемый внутри НТП. Анизотропия КЛ более изменчива, чем плотность КЛ, и в отличие от изменений плотности, которые определяются условиями в обширной области внутренней гелиосферы, анизотропия сильнее связана с изменениями характеристик среды именно в точке наблюдения. Эти изменения часто бывают значительно сильнее, чем средние изменения в области создания ФП. В НТП. как правило, сильно меняются величина, и еще больше, направление ММП, и это непосредственно сказывается на величине и направлении анизотропии КЛ. Это объясняет большую изменчивость анизотропии КЛ внутри НТП.

Средние (в течение НТП) значения скорости СВ и индукции ММП умеренно коррелируют с величиной температурного индекса и не показывают статистической связи с пролоджительностью и мощностью НТП. При этом, значения коэффициентов корреляции V-KT и B-KT внутри каждой группы событий одинаковы. В то же время, размах (в течение НТП) параметров СВ и ММП показывает корреляцию от умеренной до сильной как с величиной KT, так и с длительностью и мощностью НТП во всех группах событий. Самая высокая корреляция наблюдается между параметрами VR и DUR, то есть изменение скорости СВ сильнее зависит от длительности НТП, чем изменение других параметров. Известно, что в магнитных облаках (которые более подробно обсуждаются ниже) скорость СВ падает со временем (напр., [Gosling, 1990; Belov et al., 2015]) и, как правило, чем дольше время этого снижения, чем больше величина изменения скорости. Размах вариаций КЛ коррелирует умеренно или значительно с параметрами *DUR*, *KT*, *SUM* во всех группах событий. Наблюдается также умеренная корреляция геомагнитных индексов с параметром KT во всех группах, кроме CH. При этом, для *Ap*- и *Dst*-индексов коэффициенты корреляции с KT практически одинаковы (по модулю) и не меняются от группы к группе. Известно, что разница в поведении Ap- и Dst-индексов связана с тем, что для конструирования этих индексов используются показания магнитовариационных станций, расположенных на разных геомагнитных широтах, и в них оказываются включенными отклики разных магнитосферно-ионосферных токовых систем. Полученные результаты показывают, что связь между характеристиками низкотемпературных периодов и геомагнитной активности не отличается для экваториальной и полярной токовых систем.

3.3. Низкотемпературные периоды и магнитные облака

В интервале времени 1997—2022 гг. связь НТП с МО установлена для ≈ 10 % всех событий (группа FULL+MC, N=243), причем привязанными к ФП из них оказались N=179 событий (группа FD+MC). Количество НТП, связанных с МО, зависит от типа солнечного источника, вызывающего ФП: а) N=98 в группе СМЕ2+МС ($\approx 20\%$ от всех событий, связанных с волоконными выбросами вне AO); б) N=27 в группе СМЕ1+МС ($\approx 10\%$ от всех событий, связанных с СМЕѕ из AO); в) N=54 в группе МІХ+МС ($\approx 10\%$ от всех смешанных событий). Ниже приводятся результаты статистического сравнения параметров НТП для групп событий с МО и без МО.

На рис. 5 показаны гистограммы параметров НТП для событий, связанных (группа FD+MC) или не связанных (группа FD-MC) с MO. На рисунке видно существенное различие между распределениями параметра КТ в двух группах событий. Для НТП, связанных с МО, распределение ближе к симметричному, для НТП без МО наблюдается существенная отрицательная асимметрия и сдвиг распределения в сторону больших значений параметра КТ. Это совпадает с результатами Melkumyan et al. [2021], где проводился анализ только почасовых значений температурного индекса без выполнения условия KT < 0.5 не менее трех часов подряд. Что касается длительности $HT\Pi$, то форма гистограмм параметра DURв обеих группах схожая (островершинное распределение с положительной асимметрией и длинным "хвостом" в области больших значений), хотя количественные соотношения разные (например, мода распределения показывает частоту 50 % для событий без МО и 37 % для событий с МО). Чтобы решить вопрос о сходстве или различии распределений параметра DUR для событий с МО и без МО, были построены графики кумулятивной функции распределения, представленные на рис. 6. На рис. 6 видно, что графики CDF параметра DUR в группах с MO и без MO практически совпадают, за исключением небольших отличий на участке 15 ч $\leq DUR \leq$ 20 ч. В то же время, графики CDF параметра KT подтверждают существенное различие распределений этого параметра в группах с МО и без МО. Анализ гистограмм на рис. 5 показывает, что наименьшее различие между распределениями в группах событий с МО и без МО наблюдается для параметра V, наибольшее — для параметров B (распределение заметно сдвигается в сторону больших значений при наличии МО) и КТ (сдвиг распределения в сторону больших значений при отсутствии МО).

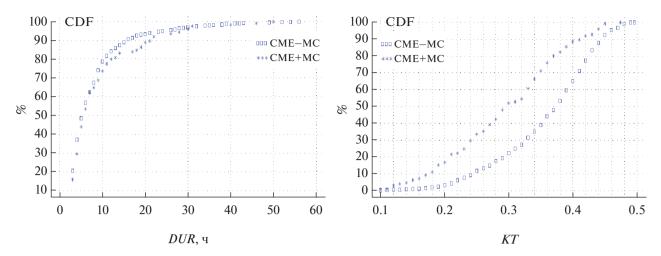


Рис. 5. Гистограммы параметров *DUR, KT, SUM, CR, B, V* в группах FD+MC и FD—MC (из соображений масштаба не показаны значения B = 47.90 нТл, V = 1069 км/с в группе FD+MC и B = 33.53 нТл, B = 30.78 нТл, CR = 11.58 % в группе FD—MC).

Это можно объяснить характеристиками, присущими МО: повышенные значения ММП и пониженные температуры СВ (напр., [Belov et al., 2015] и ссылки в ней). Для распределения параметра *СК* также наблюдается сдвиг в сторону больших значений для НТП, связанных с МО, что подтверждает вывод о том, что ICME с МО более эффективно модулируют КЛ, чем ICME без МО (напр., [Zhang and Burlaga, 1988; Kumar and Badruddin, 2014; Абунина и др., 2021]).

Нами были посчитаны статистические характеристики параметров HTП для групп событий

с МО и без МО, доступ по ссылке (http://spaceweather.izmiran.ru/papers/2024/appendix_123. pdf) см. Приложение 3. Значения этих характеристик также показывают, что наименьшая разница между группами наблюдается для распределения скорости СВ. Хотя средние значения параметра V немного выше в группе СМЕ+МС, межквартильные интервалы в группах СМЕ+МС и СМЕ—МС перекрываются, а значения асимметрии практически равны, что говорит о близости распределений параметра V в этих двух группах. В то же время, в группе МІХ+МС медиана и верхний квар-

Рис. 6. Графики кумулятивной функции распределения параметров DUR и KT в группах CME+MC и CME-MC.

тиль распределения параметра VR значительно больше, а асимметрия значительно меньше, чем в группе MIX-MC.

Вообще, для большинства параметров различие между распределениями с МО и без МО заметнее в группе MIX, чем в группе СМЕ. Это может объясняться характером исходных данных: в группу СМЕ-МС включены только события, связанные с ICMEs, а в группу MIX–MC входят события, каждое из которых связано одновременно (в той или иной степени) и с ІСМЕ, и с СН. Особенно существенна эта разница в распределениях параметра DUR, где медианы в группах СМЕ+МС и СМЕ-МС совпадают (6 ч), а медиана в группе MIX+MC (11 ч) в два раза больше, чем в группе МІХ-МС (5 ч). Средние значения параметра КТ ниже при наличии МО, а межквартильные интервалы значительно перекрываются в группах с МО и без МО для событий, связанных с ІСМЕ, и почти не перекрываются для смешанных событий. Таким образом, для параметра КТ разница между событиями с МО и без МО также выражена заметнее для смешанных событий.

Наибольшая разница между группами событий с МО и без МО наблюдается для индукции ММП. Межквартильные интервалы параметра B не пересекаются в группах с МО и без МО ни для событий, связанных с корональными выбросами (СМЕ+МС: IQR = 9.4-14.3 нТл, СМЕ-МС: IQR = 3.8-7.6 нТл), ни для смешанных событий (МІХ+МС: IQR = 9.0-15.6 нТл, МІХ-МС: IQR = 3.2-6.8 нТл). Разница между распределениями параметра B обусловлена наличием или отсутствием МО и не зависит от типа источника (СМЕ или МІХ). То же самое можно сказать о распределениях параметра BR. Для размаха вариаций КЛ

медиана выше в группе СМЕ+МС (CR = 0.48~%), чем в группе СМЕ-МС (CR = 0.24~%), но межквартильные интервалы распределений перекрываются (СМЕ+МС: 0.27-0.80~%; СМЕ-МС: 0.15-0.42%). Для смешанных событий, межквартильные интервалы параметра CR в группах с МО (0.38-1.12~%) и без МО (0.13-0.35) не перекрываются, а коэффициент асимметрии в группе МІХ+МС много меньше (2.41), чем в группе МІХ-МС (10.54). Таким образом, размах вариаций КЛ больше при наличии МО, чем при его отсутствии, но для смешанных событий эта разница проявляется значительно сильнее.

Поскольку выше были упомянуты особенности группы смешанных событий, добавим, что в этой группе чаще встречаются события с большими скоростями, которые обусловлены дополнительным воздействием высокоскоростных потоков из корональных дыр. В группе МІХ наблюдается большее изменение скорости и поля во время НТП, что приводит и к большей изменчивости уровня вариаций КЛ. Еще одной особенностью группы MIX+MC является большая продолжительность НТП, наряду с более низкими значениями *КТ*. Возможно, эти факты взаимосвязаны, и их можно было бы понять, если предположить, что МО в этой группе часто попадают на спад скорости СВ в высокоскоростном потоке из корональной дыры, что должно приводить к расширению области МО с дополнительным охлаждением плазмы в нем.

4. ЗАКЛЮЧЕНИЕ

В работе получен и опубликован полный каталог НТП (интервалов времени > 2 ч, в которых температурный индекс принимает значения < 0.5,

(http://spaceweather.izmiran.ru/papers/2024/ LowTempInterv list 1965 2022.txt) за 1965–2022 гг. и представлены результаты статистического анализа параметров НТП и связанных с ними ФП и МО. В качестве параметров НТП использовались их длительность (DUR) и мощность (SUM), средние значения температурного индекса (KT), скорости CB(V), индукции $MM\Pi(B)$, геомагнитных индексов (Dst, Ap), а также размах скорости CB(VR), индукции ММП (BR) и вариаций КЛ (CR). В качестве параметров ФП использовались амплитуда (AF), максимальное значение экваториальной анизотропии КЛ (Axv) и размах североюжной анизотропии KJ(Az). Проводилось сравнение распределений параметров и связей между ними как в целом (группы FULL и FD), так и для групп событий, связанных с разными типами солнечных источников (группы CME, CH, MIX, СМЕ1, СМЕ2). Для спорадических и смешанных событий проводился также сравнительный анализ распределений, характеризующихся наличием или отсутствием связи НТП с МО.

В работе показано, что почти все выделенные НТП частично или полностью перекрываются с периодами ФП. Рассмотренные группы событий FULL и FD являются выборками из одной и той же генеральной совокупности, и выводы о свойствах НТП, связанных с ФП, вызванными разными типами солнечных и межпланетных источников, можно распространить на события, не связанные с ФП.

Примерно 90% всех НТП относятся к событиям, обусловленным ICMEs. Установлены связи между типом солнечного источника и длительностью НТП: с ростом длительности НТП доля событий, связанных с ICMEs, сначала уменьшается, а потом резко возрастает, при этом происходит "перераспределение" событий в пользу СМЕѕ из АО, сопровождаемых солнечными вспышками. По-видимому, "волоконные" выбросы (вне АО) имеют тенденцию к повышению протонных температур из-за более длительного взаимодействия с СВ по мере распространения. В рекуррентных ФП НТП большой длительности отсутствуют, что связано с изначально более высокими значениями скорости и температуры СВ в потоках плазмы из корональных дыр.

Получено, что распределения большинства параметров островершинные, с положительной асимметрией и "хвостом" в области больших значений для всех типов солнечных источников (кроме симметричного распределения параметра V в группе CH), а распределение параметра KT, наоборот, плосковершинное с отрицательной асимметрией, что связано с выбором по критерию KT < 0.5.

Для всех типов солнечных источников обнаружена слабая или статистически незначимая корреляция амплитуды $\Phi\Pi$ с параметрами DUR, KT, SUM, в то время как корреляция анизотропии KЛ с этими параметрами умеренная (Axv) или значительная (Az). Этот факт, по-видимому, объясняется большей изменчивостью анизотропии КЛ в сравнении с плотностью, и ее связью с локальными изменениями характеристик среды, которые часто бывают более выраженными, чем средние изменения во всей области создания $\Phi\Pi$. Также для всех типов солнечных источников была обнаружена умеренная корреляция параметров B и Vс параметром KT; при этом размах скорости СВ и индукции ММП показывает корреляцию от умеренной (BR) до сильной (VR) как с KT, так и с параметрами DUR и SUM, что свидетельствует о прочной связи рассчитываемого температурного индекса с реально измеряемыми параметрами СВ и ММП и возможности его использования в дальнейшем для идентификации межпланетных возмушений.

Показано, что распределение параметра KT для событий с MO близко к симметричному, а для событий без MO имеет сдвиг в сторону больших значений; что еще раз подтверждает целесообразность использования малых значений параметра KT для выделения MO в данных CB. Наименьшее различие между распределениями в группах событий с MO и без MO наблюдается для параметра V, наибольшее — для параметров B (сдвиг в сторону больших значений при наличии MO) и KT (сдвиг в сторону больших значений, наоборот, при отсутствии MO). Обнаруженные закономерности хорошо согласуются с типичными характеристиками, присущими MO: повышенные значения ММП и пониженные температуры CB.

БЛАГОДАРНОСТИ

Авторы благодарны коллективам мировой сети станций космических лучей, обеспечивающим данные непрерывной регистрации нейтронной компоненты (http://cr0.izmiran.ru/ThankYou/Our_Acknowledgment. pdf). Благодарим базу данных NMDB (www.nmdb.eu), основанную в рамках программы Европейского Союза FP7 (контракт № 213007). Работа базируется на экспериментальных данных Уникальной научной установки "Российская национальная сеть станций космических лучей".

ФИНАНСИРОВАНИЕ РАБОТЫ

Данное исследование поддержано текущим финансированием института, дополнительные гранты не привлекались.

СПИСОК ЛИТЕРАТУРЫ

- Абунина М.А., Белов А.В., Шлык Н.С., Ерошенко Е.А., Абунин А.А., Оленева В.А., Прямушкина И.И., Янке В.Г. Форбуш-эффекты, созданные выбросами солнечного вещества с магнитными облаками // Геомагнетизм и аэрономия. Т. 61. № 5. С. 572—582. 2021. https://doi.org/10.31857/S0016794021050023
- Белов А.В., Ерошенко Е.А., Янке Г.В., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374—389. 2018. https://doi.org/10.7868/S0016794018030082
- Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976-2000 гг. // Космич. исслед. Т. 47. № 2. С. 99-113. 2009.
- Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Основные свойства Форбуш-эффектов, связанных с высокоскоростными потоками из корональных дыр // Геомагнетизм и аэрономия. Т. 58. № 2. С. 163—176. 2018. https://doi.org/10.7868/S0016794018020025
- Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Поведение скорости и температуры солнечного ветра в межпланетных возмущениях, создающих Форбуш-понижения // Геомагнетизм и аэрономия. Т. 60. № 5. С. 547—556. 2020. https://doi.org/10.31857/S0016794020040100
- Шлык Н.С., Белов А.В., Абунина М.А., Ерошенко Е.А., Абунин А.А., Оленева В.А., Янке В.Г. Влияние взаимодействующих возмущений солнечного ветра на вариации галактических космических лучей // Геомагнетизм и аэрономия. Т. 61. № 6. С. 694—703. 2021. https://doi.org/10.31857/S0016794021060134
- Belov A.V., Eroshenko E.A., Oleneva V.A., Struminsky A.B., Yanke V.G. What determines the magnitude of forbush decreases? // Adv. Space Res. V. 27. № 3. P. 625–630. 2001. https://doi.org/10.1016/S0273-1177(01)00095-3
- Belov A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena // Proc. IAU Symposium. № 257. P. 119–130. 2009. https://doi.org/10.1017/S1743921309029676
- Belov A., Abunin A., Abunina M., Eroshenko E., Oleneva V., Yanke V., Papaioannou A., Mavromichalaki H. Galactic cosmic ray density variations in Magnetic Clouds // Solar Phys. V. 290. P. 1429—1444. 2015. https://doi.org/10.1007/s11207-015-0678-z
- *Bothmer V., Zhukov A.* The Sun as the prime source of space weather. In: Space Weather- Physics and Effects. Springer Praxis Books. Springer, Berlin, Heidelberg. P. 31–102. 2007. https://doi.org/10.1007/978-3-540-34578-7_3
- Burlaga L.F., Ogilvie K.W. Heating of solar wind // ApJ.
 V. 159. P. 659–670. 1970. https://doi.org/10.1086/150340
- Burlaga L., Sittler E., Mariani F., Schwenn R.J. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations // J. Geophys. Res. V. 86. P. 6673—6684. 1981. https://doi.org/10.1029/JA086iA08p06673

- Burlaga L., Klein L., Sheeley N.R. Jr., Michels D.J., Howard R.A., Koomen M.J., Schwenn R., Rosenbauer H. A magnetic cloud and a coronal mass ejection // Geophys. Res. Lett. V. 9. № 12. P. 1317—1320. 1982. https://doi.org/10.1029/GL009i012p01317
- *Cane H.V.* CMEs and Forbush decreases // Space Sci. Revs. V. 93. № 1–2. P. 55–77. 2000. https://doi.org/10.1023/A:1026532125747
- Chaddock R.E. Principles and Methods of Statistics (1st ed.). Boston: Houghton Mifflin Company, 471 p. 1925.
- Demouline P. Why Do Temperature and Velocity Have Different Relationships in the Solar Wind and in Interplanetary Coronal Mass Ejections? // Sol. Phys. V. 257. P. 169–184. 2009. https://doi.org/10.1007/s11207-009-9338-5
- Elliott H.A., McComas D.J., Schwadron N.A., Gosling J.T., Skoug R.M., Gloeckler G., Zurbuchen T.H. An improved expected temperature formula for identifying interplanetary coronal mass ejections // J. Geophys. Res. V. 110. № A4. ID A04103. 2005. https://doi.org/10.1029/2004JA010794
- Elliott H.A., Henney C.J., McComas D.J., Smith C.W., Vasquez B.J. Temporal and radial variation of the solar wind temperature-speed relationship // J. Geophys. Res. Space. V. 117. ID A09102. 2012. https://doi.org/10.1029/2011JA017125
- Elliott H.A., McComas D.J., DeForest C.E. Long-term trends in the solar wind proton measurements // Astrophys.J. V. 832. № 1. ID. 66. 2016. https://doi.org/10.3847/0004-637X/832/1/66
- Forbush S.E. On the effects in the cosmic-ray intensity observed during magnetic storms // Phys. Rev. V. 51. P. 1108—1109. 1937. https://doi.org/10.1103/PhysRev.51.1108.3
- Gopalswamy N., Akiyama S., Yashiro S., Mäkelä P. Coronal Mass Ejections from Sunspot and non-Sunspot Regions. In Magnetic Coupling between the Interior and the Atmosphere of the Sun, eds. Hasan S. S. and Rutten R. J., Astrophysics and Space Science Proc., Springer Berlin Heidelberg. P. 289–307. 2010a. https://doi.org/10.1007/978-3-642-02859-5_24
- Gopalswamy N., Xie H., Mäkelä P., Akiyama S., Yashiro S., Kaiser M.L., Howard R.A., Bougeret J.-L. Interplanetary shocks lacking type II radio bursts // Astrophys. J. V. 710. № 2. P. 1111—1126. 2010b. https://doi.org/10.1088/0004-637X/710/2/1111
- Gosling J.T., Pizzo V., Bame S.J. Anomalously low proton temperatures in the solar wind following interplanetary shock waves Evidence for magnetic bottles? // J. Geophys. Res. V. 78. № 13. P. 2001—2009. 1973. https://doi.org/10.1029/JA078i013p02001
- Gosling J.T. Coronal mass ejections and magnetic flux ropes in interplanetary space // Geophys. Monogr. V. 58.
 P. 343–364, 1990. https://doi.org/10.1029/GM058p0343
- *Huttunen K.E.J.*, *Schwenn R.*, *Bothmer V.*, *Koskinen H.E.J.* Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 // Annales Geophysicae. V. 23. № 2. P. 625–641. 2005. https://doi.org/10.5194/angeo-23-625-2005

- *Iucci N., Parisi M., Storini M., Villoresi G.* Forbush decreases: origin and development in the interplanetary space // Nuovo Cimento C. V. 2. P. 1−52. 1979.
- Kim R.S., Gopalswamy N., Cho K.S., Moon Y.J., Yashiro S. Propagation Characteristics of CMEs associated with Magnetic Clouds and Ejecta // Solar Physics. V. 284. № 1. P.77–88. 2013. https://doi.org/10.1007/s11207-013-0230-y
- King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data // J. Geophys. Res. V. 110. I. A2. A02104. 2005. https://doi.org/10.1029/2004JA010649
- *Kumar A., Badruddin.* Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays // Solar Phys. V. 289. P. 2177—2205. 2014. https://doi.org/10.1007/s11207-013-0465-7
- Lockwood J.A. Forbush decreases in the cosmic radiation // Space Sci. Revs. V. 12. № 5. P. 658–715. 1971.
- Lopez R.E., Freeman J.W. The solar wind proton temperature-velocity relationship // J. Geophys. Res. V. 91. P. 1701–1705. 1986. https://doi.org/10.1029/JA091iA02p01701
- *Lopez R.E.* Solar cycle invariance in solar wind proton temperature relationships//J. Geophys. Res. V. 92. P. 11189–11194. 1987. https://doi.org/10.1029/JA092iA10p11189
- Lynch B.J., Zurbuhen T.H., Fisk L.A., Antiochos S.K. Internal structure of magnetic clouds: Plasma and composition // Journal of Geophysical Research Space Physics. V. 108. № A6. ID 1239. 2003. https://doi.org/10.1029/2002JA009591
- Lynch B.J., Gruesbeck J.R., Zurbuchen T.H., Antiochos S.K. Solar cycle—dependent helicity transport by magnetic clouds // Journal of Geophysical Research. V. 110. № A8. ID A08107. 2005. https://doi.org/10.1029/2005JA011137
- *Marubashi K., Lepping R.P.* Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux ropes models // Annales Geophysicae. V. 25. № 11. P. 2453–2477. 2007. https://doi.org/10.5194/angeo-25-2453-2007
- Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. Article ID e2020SW002641. 2021. https://doi.org/10.1029/2020SW002641
- *Matthaeus W.H., Elliot H.A., McComas D.J.* Correlation of speed and temperature in the solar wind // J. Geophys. Res. V. 111. № A10. ID A10103. 2006. https://doi.org/10.1029/2006JA011636

- *Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Yanke V.G., Oleneva V.A.* Solar wind temperature-velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance // MNRAS. V. 500. № 3. P. 2786—2797. 2021. https://doi.org/10.1093/mnras/staa3366
- *Melkumyan A.A., Belov A.V., Abunina M.A., Shlyk N.S., Abunin A.A., Oleneva V.A., Yanke V.G.* Forbush decreases associated with coronal mass ejections from active and nonactive regions: statistical comparison // MNRAS. V. 515. № 3. P. 4430—4444. 2022. https://doi.org/10.1093/mnras/stac2017
- *Neugebauer M., Snyder C.W.* Mariner 2 Observations of the solar wind: 1. Average properties // J. Geophys. Res. V. 71. P. 4469–4484. 1966. https://doi.org/10.1029/JZ071i019p04469
- Neugebauer M., Steinberg J.T., Tokar R.L., Barraclough B.L., Dors E.E., Wiens R.C., Gingerich D.E., Luckey D., Whiteaker D.B. Genesis on-board determination of the solar wind flow regime // Space Sci. Rev. V. 105. P. 661–679. 2003. https://doi.org/10.1023/A:1024478129261
- Richardson I.G., Cane H.V. Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta // J. Geophys. Res. V. 100. № A12. P. 23397–23412. 1995a. https://doi.org/10.1029/95JA02684
- Richardson I.G., Cane H.V. Regions of abnormally low proton temperature as signatures of ejecta in the solar wind and their solar cycle dependence / 24th ICRC. Rome, Italy, 1995. V. 4. P. 868–871. 1995b.
- Richardson I.G. Energetic Particles and Corotating Interaction Regions in the Solar Wind // Space Sci. Rev. V. 111. № 3. P. 267–376. 2004. https://doi.org/10.1023/B:SPAC.0000032689.52830.3e
- Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009):
 Catalog and summary of properties // Solar Phys. V. 264.
 № 1. P. 189–237. 2010. https://doi.org/10.1007/s11207-010-9568-6
- Shlyk N.S, Belov A.V., Abunina M.A., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases caused by paired interacting solar wind disturbances // Monthly Notices of the Royal Astronomical Society. V. 511. № 4. P. 5897—5908. 2022. https://doi.org/10.1093/mnras/stac478
- Zhang G., Burlaga L. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases // J. Geophys. Res. V. 93. № A4. P. 2511–2518. 1988. https://doi.org/10.1029/JA093iA04p02511

Solar Wind Low-Temperature Intervals and Forbush Decreases: A Statistical Comparison

A. A. Melkumyan¹, N. S. Shlyk¹, A. V. Belov¹, M. A. Abunina^{1, *}, A. A. Abunin¹, V. A. Oleneva¹, V. G. Yanke¹

¹Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN), Moscow, Troitsk, Russia

*e-mail: abunina@izmiran.ru

Based on a large amount of experimental material, the hourly values of the solar wind speed and proton temperature were compared; the expected proton temperature and the temperature index (the ratio of the observed temperature to the expected one) were calculated. Using the Cosmic Ray Variations Database, from 1997 to 2022 low-temperature intervals were identified (intervals lasting more 2 hours, in which hourly values of the temperature index less than 0.5). The work investigated: a) statistical relationships between the parameters of low-temperature intervals and the characteristics of Forbush decreases associated with different types of solar sources; b) distributions of parameters of low-temperature intervals for interplanetary disturbances containing or not containing a magnetic cloud. The results obtained showed that with increasing duration of the low-temperature interval, the proportion of events associated with ejections from active regions increases, and the proportion of recurrent events and events associated with ejections outside active regions decreases. The correlation of the parameters of low-temperature intervals with the amplitude of Forbush decreases is weak, with the equatorial anisotropy of cosmic rays — moderate, with the north-south anisotropy — significant. The solar wind speed and magnetic field strength correlate moderately with the temperature index, and the correlation of the range of these parameters with the duration of low-temperature intervals is significant or strong.

Keywords: Forbush decreases, solar wind, interplanetary disturbances, cosmic rays.