Unique mineral association and the first finding of extraterrestrial ferrodimolybdenite in the Kunya-Urgench H5 chondrite
- 作者: Teplyakova S.N.1, Lorenz C.A.1, Kudryavtsev A.A.2, Somov P.A.2, Borisovskiy S.E.3
-
隶属关系:
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Tescan LTD
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS
- 期: 卷 70, 编号 9 (2025): VOL 70, NO9 (2025)
- 页面: 716-726
- 栏目: Articles
- URL: https://journals.rcsi.science/0016-7525/article/view/351287
- DOI: https://doi.org/10.7868/S3034495625090034
- ID: 351287
如何引用文章
详细
作者简介
S. Teplyakova
Vernadsky Institute of Geochemistry and Analytical Chemistry
Email: elga.meteorite@gmail.com
Kosygina Str., 19, Moscow, 119991 Russia
C. Lorenz
Vernadsky Institute of Geochemistry and Analytical ChemistryKosygina Str., 19, Moscow, 119991 Russia
A. Kudryavtsev
Tescan LTDGrazhdansky Prospekt, 11, St. Petersburg, 195220 Russia
P. Somov
Tescan LTDGrazhdansky Prospekt, 11, St. Petersburg, 195220 Russia
S. Borisovskiy
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RASStaromonetnyi per., 35, Moscow, 119017 Russia
参考
- Иванов А.В., Ярошевский А.А, Иванова М.А. (2019). Минералы метеоритов – новый каталог. Геохимия. 64(8), 869–932.
- Ivanov A.V., Yaroshevskiy A.A., Ivanova M.A. (2019). Meteorite Minerals. Geochem. Int. 64 (8), 931–939.
- Benedix G.K., Ketcham R.A., Wilson L., McCoy T.J., Bogard D.D., Garrison D.H., Herzog G.F., Xue S., Klein J., Middleton R. (2008). The formation and chronology of the PAT 91501 impact-melt L chondrite with vesicle–metal–sulfide assemblages. Geochim. Cosmochim. Acta. 72, 2417–2428.
- Bowers T.S., Campbell A.C., Measures C.I., Spivack A.J., Khadem M., Edmond J.M. (1998). Chemical controls on the composition of vent fluids at 13°–11°N and 21°N, East Pacific Rise. JGR Solid Earth. 93, B5.
- Buchwald V.F. 1975. Handbook of Iron Meteorites. Their History, Distribution, Compositionand Structure. Berkeley: University of California Press. 262 p.
- Brearley A.J. (2006). The Action of Water. IN: Meteorites and the Early Solar System II (Lauretta, D.S. & McSween Jr, H.Y., editors), 587–624.
- Britvin S.N., Murashko M.N., Krzhizhanovskaya M.G., Vereshchagin O.S., Vapnik Ye., Shilovskikh V.V., Lozhkin M.S. and Obolonskaya E.V. (2022a). Nazarovite, Ni12P5, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni3P. American Mineralogist, https://doi.org/10.2138/am-2022-8219
- Britvin S.N., Murashko M.N., Vapnik Ye., Polekho- vsky Yu.S., Krivovichev S.V. (2017a). Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geology of Ore Deposits. 59, 619–625.
- Britvin S.N., Murashko M.N., Vapnik Ye., Polekhovsky Yu.S., Krivovichev S.V., Vereshchagin O.S., Vlasenko N.S., Shilovskikh V.V., Zaitsev A.N. (2019a). Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys. Chem. Miner. 46, 361–369.
- Britvin S.N., Murashko M.N., Vapnik Ye., Polekho- vsky Yu.S., Krivovichev S.V., Krzhizhanovskaya M.G., Vereshchagin O.S., Shilovskikh V.V., Vlasenko N.S. (2020a). Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite–transjordanite (hexagonal Fe2P–Ni2P). Am. Mineralog. 105, 428–436.
- Britvin S.N., Murashko M.N., Vapnik Ye., Polekhovsky Yu.S., Krivovichev S.V., Vereshchagin O.S., Shilovskikh V.V., Vlasenko N.S., Krzhizhanovskaya M.G. (2020b). Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Phys. Chem. Miner. 2020, 3.
- Britvin S.N., Murashko M.N., Vapnik Ye., Polekho- vsky Yu.S., Krivovichev S.V., Vereshchagin O.S., Shilovskikh V.V., Krzhizhanovskaya M.G. (2020c). Negevite, the pyrite-type NiP2, a new terrestrial phosphide. Am. Mineralog. 105, 422–427.
- Britvin S.N., Vapnik Ye., Polekhovsky Yu.S., Krivovi- chev S.V., Krzhizhanovskaya M.G., Gorelova L.A., Vereshchagin O.S., Shilovskikh V.V., Zaitsev A.N. (2019b). Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineral. Petrol. 113, 237–248.
- Burg A., Starinsky A., Bartov Y., Kolodny Y. (1992). Geology of the Hatrurim Formation («Mottled Zone») in the Hatrurim basin. Isr. J. Earth Sci. 40, 107–124.
- Bussell M., Charles A., Petersen U., & Shepherd Th., & Bermudez C., Baxter A. (1990). The Ag-Mn-Pb-Zn vein, replacement, and skarn deposits of Uchucchacua, Peru: studies of structure, mineralogy, metal zoning, Sr isotopes and fluid inclusions. Economic Geology. 85, 1348–1383. 10.2113/gsecongeo.85.7.1348.
- Caillet C., MacPherson G.J., El Goresy A. (1988). Fremdlinge in Vigarano CAI 477B: Assemblages, compositions, and possible fractionation history. 19th Lunar Planet. Sci. Conf.
- Campbell A.J., Simon S.B., Humayun M., Grossman L. (2003) Chemical Evolution of Metal in Refractory Inclusions in CV3 Chondrites. Geochim. Cosmochim. Acta. 67, 3119–3134.
- Chabot N.L., Campbell A.J., Jones J.H., Humayun M., Agee C.B. (2003) An experimental test of Henry’s Law in solid metal-liquid metal systems with implications for iron meteorites. Meteorit. Planet. Sci. 38, 181–196.
- Chevrel R., Sergent M., Meury J.L., Quan D.T. (1974). Proprietes Magnetiques et electriques en relation avec Leur Structure, des Composes MMo2S4, (M = V, Cr, Fe, Co). J. Solid State Chemistry. 10, 260.
- Chevrel R., Sergent M., Prigent J. (1971). Sur de nouvelles phases sulfurées ternaires du molybdène. J. Solid State Chem. 3, 515–519.
- D’Orazio M., Folco L., Chaussidon M., Rochette P. (2009). Meteorit. Planet. Sci. 44, 221–231.
- Ehlers K., El Gorsey A. (1988) Normal and reverse zoning in niningerite – A novel key parameter to the thermal histories of EH-chondrites. Geochim. Cosmochim. Acta. 52, 877–887.
- El Goresy A., Yabuki H., Ehlers K., Woolum D.S., Pernicka E. (1988) Qingzhen and Yamato 691: A tentative alphabet for the EH chondrite clan. Proc. Nation. Inst. Polar Res. 1, 65–101.
- Fuchs L.H., Blander M. (1977). Molybdenite in calcium-aluminium-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta. 41(8), 1170–1175.
- Fujita T., Kojima H., Yanai K. (1999) Origin of metal-troilite aggregates in six ordinary chondrites Antarctic Meteorite Research. Twentythird Symposium on Antarctic Meteorites, NIPR Symposium. 12, 19–35.
- Galuskin E.V., Galuskina I.O., Kusz J., Książek M., Vapnik Y., Zieliński G. (2024 in press) Ferrodimolybdenite, FeMo3+2S4 from Daba-Siwaqa, Jordan – the first natural compound of trivalent molybdenum. Mineralogical Magazine, https://doi.org/10.1180/mgm.2024.82
- Gross H. (1977). The mineralogy of the Hatrurim Formation Israel. Geol. Surv. Isr. Bull. 70, 1–80.
- Guillevic J., le Marouille J.Y., Grandjean D. (1974). Etude structurale de combinaisons sulfurees et seleniees du molybdene. IV. Structures cristallines de CoMo2S4 et de FeMo2S4. Acta Crystallographica. B30, 111–117.
- Ivanova M.A., Kononkova N.N., Nazarov M.A. (2000). Rutile and Mn-rich chromite-bearing sulfide nuggets in an unusual inclusion from the Ghubara L5 chondrite 31st Lunar and Planetary Science Conference. #1715.
- Jarosewich E. (1990). Chemical analyses of meteorite: a compilation of stony and iron meteorite analyses. Meteoritics 25, 323–337.
- Kilburn M.R., Wood B.J. (1997). Metal–silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett. 152,139–148.
- Komorowski C., El Goresy A., Miyahara M., Boudouma O., Ma C. (2012). Discovery of Hg–Cu-bearing metal-sulfide assemblages in a primitive H-3 chondrite: Towards a new insight in early solar system processes. Earth Planet. Sci. Lett. 349–350, 261–271. https://doi.org/10.1016/j.epsl.2012.06.039
- Kong P., and Ebihara M. 1997. The origin and nebular history of the metal phase of ordinary chondrites. Geochim. Cosmochim. Acta. 61: 2317–2329.
- Kong P., Ebihara M., Xie X. (1998). Reevaluation of formation of metal nodules in ordinary chondrites. Meteorit. Planet. Sci. 33, 993–998.
- Lin Y., Kimura M. (1998). Petrographic and mineralogical study of new melt rocks and a new enstatite chondrite droplet. Meteorit. Planet. Sci. 33, 501–511.
- Lorenz C., Kurat G., Brandstätter F., Nazarov M.A. (2003). NWA 1235: A phlogopite-bearing enstatite meteorite. 34th Lunar Planet Sci. Conf. #1211.
- Lu Y., Miki T. (2021). Thermodynamics of Solid and Liquid MnS–CrS–FeS Phase in Equilibrium with Molten Fe–Cr–Mn–S Alloy. ISIJ International. 61(9), 2360–2369. https://doi.org/10.2355/isijinternational. ISIJINT-2021-088
- Mason B., Jarosewich E. (1967) The Winona meteorite, Geochim. Cosmochim. Acta. 31, 1097–1099. https://doi.org/10.1016/0016-7037(67)90083-X
- Murashko M.N, Britvin S.N., Vapnik Y., Polekho- vsky Y.S., Shilovskikh V.V., Anatoly N., Zaitsev A.N., Vereshchagin O.S. (2022). Nickolayite, FeMoP, a new natural molybdenum phosphide. Mineralog. Magazine. 86, 749–757, https://doi.org/10.1180/mgm.2022.52
- Odekov T., Muhamed-nazarov S., Ivanov A. (1999). Kunya-Urgench. In: Grossman, J. N. The Meteoritical Bulletin, No. 83, Meteorit. Planet. Sci. 34, 169–186.
- Peter J. & Scott S. (1988). Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the Southern Trough of Guaymas Basin, Gulf of California. Can. Mineral. 26, 567–587.
- Rambaldi E. (1976) Trace Element Content of Metals from L-Group Chondrites. Earth Planet. Sci. Lett. 31, 224–238.
- Ray D., Ghosh S., Murty S.V.S. (2017). On the possible origin of troilite-metal nodules in the Katol chondrite (L6–7). Meteorit. Planet. Sci. 52, 72–88.
- Rubin A, Ma C. (2021). Meteorite Mineralogy. Cambridge University Press.
- Rubin A.E. (1985). Impact melt products of chondritic material. Rev. Geophys. 23, 277–300.
- Schrader D.L., Lauretta D.S., Connolly jr. H.C., Goreva Y.S., Hill D.H., Domanik K.J., Berger E.L., Yang H., Downs R.T. (2010). Sulfide-rich metallic impact melts from chondritic parent bodies. Meteorit. Planet. Sci. 45(5), 743–758. https://doi.org/10.1111/j.1945-5100.2010.01053.x
- Scott E.R.D. (1973). Large metal nodules in ordinary chondrites. Eos Trans. AGU. 54, 1125–1126.
- Sears D.W., Kallemeyn G.W., Wasson J.T. (1983). Composition and origin of clasts and inclusions in the Abee enstatite chondrite breccia. Earth Planet. Sci. Lett. 62, 180–192.
- Skinner J., Luce D. (1971). Solid solutions of the type (Ca, Mg, Mn, Fe)S and their use as geothennometers for the enstatite chondrites. Am. Mineral. 56, 1269–1296.
- Tomkins A.G., Weinberg R.F., Schaefer B.F., Langenda A. (2013). Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation. Geochim. Cosmochim. Acta. 100, 41–59.
- Vaqueiro P., Kosidowski M.L., Powell A.V. (2002). Structural Distortions of the Metal Dichalcogenide Units in AMo2S4 (A = V, Cr, Fe, Co) and Magnetic and Electrical Properties. Chem. Mater. 14 (3), 1201–1209.
- Wada H., Onoda M., Nozaki H., Kawada I. (1985). The phase relations and homogeneity range of the iron Chevrel compound FexMo6S8–y. J. Less-Common Met. 113, 53–63
- Wasson J.-T., Kallemeyn G.W. (1988). Composition of Chondrites. Philos. Trans. R. Soc. A 328, 535–44.
- Weyrauch M., Horstmann M., Bischoff A. (2017). Chemical variations of sulfides and metal in enstatite chondrites-Introduction of a new classification scheme. Meteorit. Planet. Sci. 53(3), 394–415. https://doi.org/10.1111/maps.13025
- Widom E., Rubin A.E., Wasson J.T. (1986) Composition and formation of metal nodules and veins in ordinary chondrites. Geochim. Cosmochim. Acta. 50, 1989–1995.
- Zhang Y., Sears D.W.G. (1996). The thermometry of enstatite chondrites: A brief review and update. Meteorit. Planet. Sci. 31(5), 647–655. https://doi.org/10.1111/j.1945-5100.1996.tb02038
补充文件


