Carbonaceous chondrite clast captured in collision event by the Elga iron meteorite (Group IIE)
- Autores: Khisina N.R.1, Teplyakova S.N.1, Korochantsev A.V.1, Abdrakhimov A.M.1
-
Afiliações:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Edição: Volume 70, Nº 9 (2025): VOL 70, NO9 (2025)
- Páginas: 770-782
- Seção: Articles
- URL: https://journals.rcsi.science/0016-7525/article/view/351290
- DOI: https://doi.org/10.7868/S3034495625090066
- ID: 351290
Citar
Resumo
Sobre autores
N. Khisina
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: elga.meteorite@gmail.com
Kosygin Str., 19, Moscow, 119991 Russia
S. Teplyakova
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesKosygin Str., 19, Moscow, 119991 Russia
A. Korochantsev
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesKosygin Str., 19, Moscow, 119991 Russia
A. Abdrakhimov
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesKosygin Str., 19, Moscow, 119991 Russia
Bibliografia
- Воропаев С.А., Кривенко А.П., Душенко Н.В. (2023a) Раман-геотермометр для углистых хондритов. ДАН. Физика, технические науки. 512 (1), 69–72.
- Воропаев С.А., Душенко Н.В., Кривенко А.П., Федулов В.С., Рязанцев К.М., Корочанцев А.В. (2023b) Особенности дегазации углистого хондрита Allende (CV3) в интервале температур 200–800 оС. Астрономический вестник. 57 (6), 583–594.
- Крылов О.В. (2000) Углекислотная конверсия метана в синтез-газ. Российский химический журнал. 44 (1), 19–33.
- Мезенцева Л.П., Попова В.Ф., Альмяшев В.И., Ломанова Н.А., Уголков В.Л., Бешта С.В., Хабенский В.Б., Гусаров В.В. (2006) Фазовые и химические превращения в системе SiO2–Fe2O3 (Fe3O4) при различных парциальных давлениях кислорода. Журнал неорганической химии. 51 (1), 126–133.
- Сенин В.Г., Зиновьева Н.Г., Панкрушина Е.А., Аверин А.А., Хисина Н.Р. (2018) Идентификация минеральных фаз в областях ударного плавления в метеорите Эльга. Труды Всероссийского ежегодного семинара по экспериментальной минералогии, петрологии и геохимии (ВЕСЭМПГ-2018). 356–359.
- Стенников А., Воропаев С., Федулов В., Душенко Н., Наймушин С. (2019) Экспериментальное исследование состава продуктов дегазации метеорита Челябинск. Астрономический вестник. 53 (3), 214–223.
- Теплякова С.Н., Хисина Н.Р., Артемов В.В., Васильев А.Л. (2012) Наноминералогия дендритных включений в железном метеорите Эльга. Записки Российского минералогического общества. 141 (2), 42–52.
- Теплякова С.Н. (2017) Петрология и геохимия железных метеоритов группы IIE с силикатными включениями на примере метеорита Эльга. Диссертация на соискание ученой степени канд. геол.-мин. наук. Москва: ГЕОХИ РАН, 150 с.
- Теплякова С.Н., Лоренц К.А., Иванова М.А., Кононкова Н.Н., Аносова М.О., Рязанцев К.М. (2018) Минералогия силикатных включений в железном метеорите группы IIE Эльга. Геохимия. 67 (1), 1–25.
- Teplyakova S.N., Lorenz C.A., Ivanova M.A., Kono- nkova N.N., Anosova M.O., Ryazantsev K.M., Kostitsyn Y.A. (2018) Mineralogy of silicate inclusions in the Elga IIE iron meteorite. Geochem. Int. 56, 1–23.
- Хисина Н.Р., Теплякова С.Н., Сенин В.Г., Ширяев А.А., Аверин А.А. (2017) Углеродсодержащие фазы в зонах ударного плавления метеорита Эльга. Геохимия. 62 (4), 287–301.
- Khisina N.R., Teplyakova S.N., Senin V.G., Shiryaev A.A., Avering A.A. (2017) Carbon-bearing phases in shock-induced melt zones of the Elga meteorite. Geochem. Int. 55, 315–329.
- Хисина Н.Р., Вирт Р., Абдрахимов А.А. (2019) Жидкостная несмесимость в областях локального ударного плавления метеорита Эльга. Геохимия. 64 (8), 837–847.
- Khisina N.R., Wirth R., Abdrakhimov A.A. (2019) Liquid Immiscibility in Local Shock-Melt Zones of the Elga Meteorite. Geochem. Int. 57 (8), 837–847.
- Шарыгин В.В. (2011) Саркопсид из «черных блоков» террикона шахты 45 г. Копейска, Челябинский угольный бассейн. Минералогия Урала-2011. Сборник научных статей. Миасс–Екатеринбург: УрО РАН, 2011. С. 183–186.
- Шарыгин В.В., Карманов Н.С., Подгорных Н.М., Томиленко А.А. (2014) Минералогия и петрография «проплавленного» фрагмента метеорита Челябинск. В Метеорит Челябинск – год на Земле: материалы Всероссийской научной конференции. (Под ред. Антипина Н. А. и др.). Челябинский государственный краеведче ский музей, 14–15 февраля 2014 г. 694 с. 637–653. doi: 10.13140/RG.2.1.4967.8805
- Шарыгин В.В., Яковлев Г.А., Карманов Н.С., Гроховский В.И., Подгорных Н.М. (2015) Минеральные ассоциации в пустотах темной литологии метеорита «Челябинск» (Чебаркульский фрагмент). В Онтогения, филогения, система минералогии. Материалы всероссийской конференции, Миасс, 2015. Миасс: Институт минералогии УрО РАН, 2015. 228 с. 205–217.
- Bandurski E.L., Nagy B (1976) The polymer-like organic material in the Orgueil meteorite. Geochim. Cosmochim. Acta. 40 (11), 1397–1406.
- Bonal L., Quirico E., Bourot-Denise M., Montagnac G. (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim. Cosmochim. Acta. 70 (7), 1849–1863.
- Britvin S., Murashko M.N., Vapnik Y., Poltkhovsky Yu.S., Krivovichev S.V., Vereshagin O., Shilovsky V., Krzhizhanovskaya M.G. (2020) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. Am. Mineralogist. 105 (3), 422–427.
- Bunch T.E., Chang S. (1980) Carbonaceous chondrites – II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta. 44 (10), 1543–1577.
- Clayton R.N., Mayeda T.K., Olsen E., Prinz M. (1983) Oxygen isotope relationships in iron meteorites. Earth Planet. Sci. Lett. 65 (2), 229–232.
- Cody G.D., Alexander C.M. (2005) NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochim. Cosmochim. Acta. 69 (4), 1085–1097.
- Cronin J.R., Pizzarello S. (1986) Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary alpha-amino alkanoic acids. Geochim. Cosmochim. Acta. 50 (11), 2419–2427.
- Derenne S., Robert F. (2010) Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite. Meteorit. Planet. Sci. 45 (9), 1461–1475.
- Dunn T.L., Gross J., Ivanova M.A., Runyon S.E., Bruck A.M. (2016). Magnetite in the unequilibrated CK chondrites: implications for metamorphism and new insights into their relationship between the CV and CK chondrites. Meteorit. Planetary Sci. 51 (9), 1701–1720.
- Ferrari A.C., Robertson J. (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 61 (20), 14095–14107.
- Ferroir T., Dubrovinsky L., El Goresy A., Simionovici A., Nakamura T., Gillet P. (2010). Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases. Earth Planet. Sci. Lett. 290 (1–2), 150–154.
- Floss С. (1999) Fe, Mg, Mn-bearing phosphates in the GRA 95209 meteorite: Occurrences and mineral chemistry. Am. Mineralogist. 84 (9), 1354–1359.
- Garvie L.A.J., Buseck P.R. (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites. Meteorit. Planet. Sci. 42 (12), 2111–2117.
- Garvie L.A.J., Buseck P.R (2005) Structure and bonding of carbon in clays from CI carbonaceous chondrites. In Lunar and Planetary Science XXXVI. 1515.
- Garvie L.A.J., Craven A.J., Brydson R. (1994) Use of electron-energy loss near-edge fine structure in the study of minerals. American Mineralogist. 79, 411–425.
- Han J., Simoneit B.R., Burlingame A.L., Calvin M. (1969) Organic analysis on the Pueblito de Allende meteorite. Nature. 222 (5191), 364–365.
- Hayatsu R., Scott R.G., Winans R.E. (1983) Comparative structural study of meteoritic polymer with terrestrial geopolymers coal and kerogen. Meteoritics. 18 (4), 310.
- Hayatsu R., Winans R.E., Scott R.G., McBeth R.L., Moore L.P., Studier M.H. (1980) Phenolic ethers in the organic polymer of the Murchison meteorite. Science. 207 (4436), 1202–1204.
- Hayes J.M. (1967) Organic constituents of meteorites – a review. Geochim. Cosmochim. Acta. 31 (9), 1395–1440.
- Hyman N., Rowe M.W. (1983) Magnetite in CI chondrites. J. Geophys. Res.: Solid Earth. 88 (S02), A736–A740.
- Jakubek R.S., Fries M.D. (2023). Laser Raman induced degradation of macromolecular carbon in coals and meteorites. Earth Planet. Sci. Lett. 10 (6), e2022EA002724.
- Kang N., Schmidt M.W., Poli S., Franzolin E., Connolly J.D. (2015) Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chemical Geology. 400, 34–43.
- Kebukawa Y., Zolensky M.E., Chan Q.H.S., Nagao K., Kilcoyne A.L.D., Bodnar R.J., Cody G.D. (2017) Characterization of carbonaceous matter in xenolithic clasts from the Sharps (H3.4) meteorite: Constraints on the origin and thermal processing. Geochim. Cosmochim. Acta. 196, 74–101.
- Lewis R.S., Prinn R.G. (1980) Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys J. 238, 357–364.
- Kurosawa K, Collins G.S., Davison T.M., Okamoto T., Iscibashi Ko, Matsui T. (2025) Impact-driven oxidation of organic explains chondrite schock metamorphism dichotomy. Nat. Commun. 16 (1), 3608.
- Litasov D., Podgornykh N.M. (2017) Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite: Raman spectroscopy of various phosphate minerals. J. Raman Spectrosc. 48 (11). 1518–1527.
- Litasov K.D., Teplyakova S.N., Shatsky A., Kuper K.E. (2019) Fe-Ni-P-S melt pockets in Elga IIE iron meteorite evidence for the origin at high pressure up to 20 GPA. Minerals. 9 (10), 616.
- Morgan W.A., Feigelson E.D., Wang H., Frenklach M. (1991) A new mechanism for the formation of meteoritic kerogen-like material. Science. 252 (5002). 109–112.
- Murae T., Masuda A., Takahashi (1990). Spectroscopic studies of acid-resistant residues of carbonaceous chondrites. In Proc. NIPR Symp. Antarct. Meteorites. 3, 211–219.
- Nagy B. (1975). Carbonaceous meteorites. Developments in Solar System and Space Science. Bulletin de Minéralogie. 98 (1), 14–15
- Nagata K., Kodama K. 2022. Mechanism of Carbothermic Reduction of Fe3O4 Irradiated by Microwave with 2.45 GHz. ISIJ International. 62 (8), 1607–1617.
- Nasibulin A.G., Queipo P., Shandakov S.D., Brown D.P., Jiang H., Pikhitsa P.V., Tolochko O.V., Kauppinen E.I. (2006) Studies on Mechanism of Single-Walled Carbon Nanotube Formation. J. Nanosci. Nanotechnol. 6 (5).
- Nestola F., Goodrich C.A., Morana M., Barbaro A., Jakubek R.S., Christ O., et al. (2020) Impact shock origin of diamonds in ureilite meteorites. In Proc. of the Nat. Academy of Sciences. 117 (41), 25310–25318.
- Olsen E.J., Kracher A., Davis A.M., Steele I.M., Hutche- on I.D., Bunch T.E. (1999) The phosphates of IIIAB iron meteorites. Meteorit. Planet. Sci. 34 (2), 285–300.
- Osadchii Eu.G., Baryshnikova G.V., Novikov G.V. (1981) The Elga meteorite: silicate inclusion and shock metamorphism. In 12th Lunar Planet Sci. Conf. 12, 1049–1068.
- Palache C., Berman H., Frondel C. (1951) Dana’s system of mineralogy, (7th edition), v. II. Wiley, New York, 1124. 742–746.
- Patzek M., Bischoff A., Visser R., John T. (2018) Mineralogy of volatile-rich clasts in brecciated meteorites. Meteorit. Planet. Sci. 53 (12), 2519–2540.
- Rubin A.E., Trigo-Rodriguez J.M., Kunihiro T., Kallemeyn G.W., Wasson J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochim. Cosmochim. Acta. 69 (13), 3419–3430.
- Sephton M.A. (2002) Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 19 (3), 292–311.
- Sephton M., Gilmour I. (2005) Macromolecular organic materials in carbonaceous chondrites: A review of their sources and their role in the origin of life on the early Earth. In Impacts and the Early Earth (Eds. Gilmour I., Koeberl C.). Lecture Notes in Earth Sciences, 91. Springer, Berlin, Heidelberg. 27–49.
- Sephton M.A., Watson J.S., Meredith W., Love G.D., Gilmour I., Snape C.E. (2015) Multiple Cosmic Sources for Meteorite Macromolecules? Astrobiology. 15 (10), 779–786.
- Sharygin V.V. (2020) Mineralogy of Silicate-Natrophosphate Immiscible Inclusion in Elga IIE Iron Meteorite. Minerals. 10 (5), 437.
- Shatskiy A., Borzdov Y., Litasov K.D., Kupriyanov I.N., Ohtani E., Palyanov Yu.N. (2014) Phase relations in the system FeCO3–CaCO3 at 6 GPa and 900–1700 °C and its relation to the system CaCO3–FeCO3–MgCO3. Am. Mineralogist. 99 (4), 773–785.
- Sundara A., Ramaprabhu S. (2012) A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2 (3), 032183. https://doi.org/10.1063/1.4756995
- Weidner I.R. (1982) Iron-oxide magmas in the system Fe-C-O. Can. Mineral. 20 (4), 555–566.
- Yabuta H., Cody G.D., Engrand C., Kebukawa Y., De Gregorio B., Bonal L., Remusat L., Stroud R., Quirico E., Nittler L., Hashiguchi M. (2023) Macromolecular organic matter in samples of the asteroid (162173) Ryugu. Science. 379 (6634). eabn9057.
Arquivos suplementares


