Strontium Adsorption on Manganese Oxide (δ-MnO2) at Elevated Temperatures: Experiment and Modeling


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Strontium adsorption was studied by acid–base potentiometric titration at various pH, ionic strength, the sorbate/sorbent ratio, and temperatures (at 25, 50, and 75°C). The experimental data were interpreted using two models of surface complexation with two different electrostatic models of the interface: the constant capacitance (CCM) and triple-layer (TLM) models. Although both models are able to take into account acid–base reactions and surface complexation of Sr on birnessite, we believe that TLM is more suitable for the description of the H+–>MnOH–Sr2+ heterogeneous system. At a low ionic strength and negatively charged surface, Sr2+ ions compete with electrolyte ions and form both inner- and outer-sphere complexes. Although the application of CCM in describing Sr adsorption may be mathematically satisfactory, it has little physical sense. We suggest a model that involves both inner-sphere (>MnOHSr2+, >MnOSr+, >MnOSrOH0) and outer-sphere ([>MnO–Sr2+]+) surface complexes. The corresponding constants of formation of these surface complexes were calculated at 25, 50, and 75°C.

Об авторах

O. Karaseva

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences

Автор, ответственный за переписку.
Email: olga@iem.ac.ru
Россия, Chernogolovka, Moscow oblast, 142432

L. Ivanova

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences

Email: olga@iem.ac.ru
Россия, Chernogolovka, Moscow oblast, 142432

L. Lakshtanov

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences

Email: olga@iem.ac.ru
Россия, Chernogolovka, Moscow oblast, 142432

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).