The Study of Stream Sediment Geochemical Data Processing by Using k-Means Algorithm and Centered Logratio Transformation—an Example of a District in Hunan, China


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The backgrounds of stream sediment geochemical samples are associated with the underlying geological bodies. Moreover, a stream sediment geochemical data set is a closed number system because it contains compositional variables that are parts of a whole. Consequently, the empirical frequency distributions of stream sediment geochemical data are often skewed or with multiple peaks. While it is clear that data should approach a symmetric distribution before any threshold estimation methods are applied, so the corresponding method for transforming data is required. In this study, a new method for transformation of stream sediment geochemical data is provided. Firstly, the samples are classified by k-means method into different clusters, samples in each of which are thought to be of the same background. Then samples in each cluster are centered logratio transformed. Finally, the data after processed are tested and they all satisfy normal distributions. Furthermore, a stream sediment geochemical data set of a district in Hunan, China is taken as an example. Maps of anomalies of raw and transformed metallogenic Pb, Zn, Cu and W are portrayed respectively for comparison. The results show that anomalies of raw data correspond worse with the known deposits. By contrast, the method of mapping anomalies with transformed data performs better.

Об авторах

Mi Tian

Institute of Geophysical and Geochemical Exploration (IGGE), Chinese Academy of Geological Sciences; International Centre on Global-scale Geochemistry (ICGG),

Автор, ответственный за переписку.
Email: tianmi62080608@126.com
Китай, Langfang, 065000; Langfang, 065000

Libo Hao

Department of Geochemistry, Jilin University

Email: tianmi62080608@126.com
Китай, Changchun, 130026

Xinyun Zhao

Department of Geochemistry, Jilin University

Email: tianmi62080608@126.com
Китай, Changchun, 130026

Jilong Lu

Department of Geochemistry, Jilin University

Email: tianmi62080608@126.com
Китай, Changchun, 130026

Yuyan Zhao

Department of Geochemistry, Jilin University

Email: tianmi62080608@126.com
Китай, Changchun, 130026

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).