MgCO3 + SiO2 Reaction at Pressures up to 32 GPa Studied Using in-Situ X-Ray Diffraction and Synchrotron Radiation
- Authors: Litasov K.D.1,2, Shatskiy A.F.1,2
- 
							Affiliations: 
							- Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
 
- Issue: Vol 57, No 9 (2019)
- Pages: 1024-1033
- Section: Article
- URL: https://journals.rcsi.science/0016-7029/article/view/156316
- DOI: https://doi.org/10.1134/S0016702919090064
- ID: 156316
Cite item
Abstract
The paper reports results of an experimental study of decarbonation and melting reactions in the MgCO3–SiO2 system at pressures up to 32 GPa, using multianvil technique and in-situ X-ray diffraction with synchrotron radiation. At 3–7 GPa and 1400–1700 K, the reaction proceeds with the release of carbon dioxide and the formation of enstatite. At 9–13 GPa and 1850–1930 K, clinoenstatite, carbonate–silicate melt, and CO2 were found among the reaction products. At 16 GPa and 1825 K, the reaction is associated with the formation of wadsleyite and, at a higher temperature, by the generation of carbonated melt (with Mg/Si ratio close to wadsleyite) stishovite, and CO2 fluid. At this pressure, which coincides with the stability field of the wadsleyite–stishovite assemblage in the MgSiO3 phase diagram, the reaction temperature decreases by about 100 K. At higher pressures, the reaction proceeds with the formation of the MgSiO3 (akimotoite or bridgmanite) + melt assemblage. The reaction temperature at 25–35 GPa does not change and is about 2000 K. With a further increase in temperature to 2100 K, bridgmanite melts incongruently, reacting with the carbonate–silicate melt to form stishovite. The composition of the eutectic mixture shifts towards MgCO3 with increasing pressure. The reaction marks the upper temperature limit for the stability of magnesite and a free SiO2 phase in the Earth’s mantle and generally coincides with the mantle adiabat at depths of 300–900 km.
Keywords
About the authors
K. D. Litasov
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
							Author for correspondence.
							Email: klitasov@igm.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090; Novosibirsk, 630090						
A. F. Shatskiy
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
							Author for correspondence.
							Email: shatskiy@igm.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090; Novosibirsk, 630090						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					