Development of the multiplex genotyping method of single-nucleotide polymorphisms of genes associated with the severity of COVID-19
- 作者: Bocharova A.V.1, Trifonova E.A.1, Korneeva R.A.1, Gusarova A.A.1, Stepanov V.A.1
-
隶属关系:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
- 期: 卷 61, 编号 9 (2025)
- 页面: 106-118
- 栏目: МЕТОДИКИ
- URL: https://journals.rcsi.science/0016-6758/article/view/353933
- DOI: https://doi.org/10.7868/S3034510325090102
- ID: 353933
如何引用文章
详细
COVID-19 is a severe acute respiratory infection caused by the SARS-CoV-2 virus. Research in the field of host genetics contributes to the discovery of new genomic markers of coronavirus infection progression. In this article, a method for multiplex genotyping of polymorphic variants of genes associated with the severity of COVID-19 has been developed, based on multilocus PCR and MALDI-TOF mass spectrometry of DNA molecules. The frequencies of 45 single nucleotide polymorphisms of COVID-19 candidate genes in a population sample of Russians from Tomsk are characterized. The results are compared with data for populations from the 1000 Genomes Project.
作者简介
A. Bocharova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: anna.bocharova@medgenetics.ru
Tomsk, 634050 Russia
E. Trifonova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: anna.bocharova@medgenetics.ru
Tomsk, 634050 Russia
R. Korneeva
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: anna.bocharova@medgenetics.ru
Tomsk, 634050 Russia
A. Gusarova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: anna.bocharova@medgenetics.ru
Tomsk, 634050 Russia
V. Stepanov
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: anna.bocharova@medgenetics.ru
Tomsk, 634050 Russia
参考
- Информационная панель ВОЗ по борьбе с COVID-19. https://data.who.int/dashboards/covid19 (дата обращения: 01.02.2025).
- Kwok A. J., Mentzer A., Knight J. C. Host genetics and infectious disease: New tools, insights and translational opportunities // Nat. Rev. Genet. 2021. V. 22. № 3. P. 137–153. https://doi.org/10.1038/s41576-020-00297-6
- Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. V. 395. № 10223. P. 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
- Berlin D.A., Gulick R.M., Martinez F.J. Severe Covid-19 // N. Engl. J. Med. 2020. V. 383. № 25. P. 2451–2460. https://doi.org/10.1056/NEJMcp2009575
- Li J., Huang D.Q., Zou B. et al. Epidemiology of COVID-19: А systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes // J. Med. Virol. 2021. V. 93. № 3. P. 1449–1458. https://doi.org/10.1002/jmv.26424
- Redin C., Thorball C.W., Fellay J. Host genomics of SARS-CoV-2 infection // Eur. J. Hum. Genet. 2022. V. 30. № 8. P. 908–914. https://doi.org/10.1038/s41431-022-01136-4
- Ovsyannikova I.G., Haralambieva I.H., Crooke S.N. et al. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity // Immunol. Rev. 2020. V. 296. № 1. P. 205–219. https://doi.org/10.1111/imr.12897
- Velavan T.P., Pallerla S.R., Rüter J. et al. Host genetic factors determining COVID-19 susceptibility and severity // eBioMedicine. 2021. V. 72. https://doi.org/10.1016/j.ebiom.2021.103629
- Wang Y., Schughart K., Pelaia T.M. et al. Blood transcriptome responses in patients correlate with severity of COVID-19 disease // Front. Immunol. 2023. V. 13. https://doi.org/10.3389/fimmu.2022.1043219
- Gupta K., Kaur G., Pathak T., Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity // Gene. 2022. V. 844. https://doi.org/10.1016/j.gene.2022.146790
- Klaassen K., Stankovic B., Zukic B. et al. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection // Infect. Genet. Evol. 2020. V. 84. https://doi.org/10.1016/j.meegid.2020.104498
- Esteban M.E., Pino D., Romero-Lorca A. et al. Worldwide distribution of genetic factors related to severity of COVID-19 infection // Ann. Hum. Biol. 2024. V. 51. № 1. https://doi.org/10.1080/03014460.2024.2366248
- Kerner G., Quintana-Murci L. The genetic and evolutionary determinants of COVID-19 susceptibility // Eur. J. Hum. Genet. 2022. V. 30. P. 915–921. https://doi.org/10.1038/s41431-022-01141-7.
- Sirugo G., Williams S.M., Tishkoff S.A. The missing diversity in human genetic studies // Cell. 2019. V. 177. № 1. P. 26–31. https://doi.org/10.1016/j.cell.2019.04.032
- Балановская Е.В., Горин И.О., Петрушенко В.С. и др. Геногеография в России и мире SNP-маркеров гена LZTFL1, ассоциированных с тяжелым течением COVID-19 // Вестник РГМУ. 2022. № 5. С. 31–40. https://doi.org/10.24075/vrgmu.2022.047
- GWAS Catalog [Electronic resource]. https://www.ebi.ac.uk/gwas/. (accessed: 02.2025)
- Степанов В.А., Трифонова Е.А. Мультиплексное генотипирование однонуклеотидных полиморфных маркеров методом MALDI-TOF-масс-спектрометрии: частоты 56 SNP в генах иммунного ответа в популяциях человека // Мол. биология. 2013. Т. 47. № 6. С. 976–986. https://doi.org/10.7868/S0026898413060153
- Вейр Б. Анализ генетических данных. М.: Мир, 1995. 400 с.
- Triska P., Chekanov N., Stepanov V. et al. Between lake Baikal and the Baltic Sea: Genomic history of the gateway to Europe // BMC Genet. 2017. V. 18. Suppl. 1. https://doi.org/10.1186/s12863-017-0578-3
- Степанов В.А. Этногеномика населения Сибири и Средней Азии. Томск: Печатная мануфактура, 2002. 242 с.
- COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19 // Nature. 2021. № 600. № 7889. P. 472–477. https://doi.org/10.1038/s41586-021-03767-x
- Degenhardt F., Ellinghaus D., Juzenas S. et al. Detailed stratified GWAS analysis for severe COVID-19 in four European populations // Hum. Mol. Genet. 2022. V. 31. № 23. P. 3945–3966. https://doi.org/10.1093/hmg/ddac158
- Kousathanas A., Pairo-Castineira E., Rawlik K. et al. Whole-genome sequencing reveals host factors underlying critical COVID-19 // Nature. 2022. V. 607. № 7917. P. 97–103. https://doi.org/10.1038/s41586-022-04576-6
- Pairo-Castineira E., Rawlik K., Bretherick A.D. et al. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19 // Nature. 2023. № 617. № 7962. P. 764–768. https://doi.org/10.1038/s41586-023-06034-3
- Thibord F., Chan M.V., Chen M.H., Johnson A.D. A year of COVID-19 GWAS results from the GRASP portal reveals potential genetic risk factors // HGG Adv. 2022. V. 3. № 2. https://doi.org/10.1016/j.xhgg.2022.100095
- COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19 // Nature. 2022. V. 608. № 7921. P. e1–e10. https://doi.org/10.1038/s41586-022-04826-7
- Li Z., Dang W., Hao T. et al. Shared genetics and causal relationships between major depressive disorder and COVID-19 related traits: A large-scale genome-wide cross-trait meta-analysis // Front. Psychiatry. 2023. V. 14. https://doi.org/10.3389/fpsyt.2023.1144697
- Pandit R., Singh I., Ansari A. et al. First report on genome wide association study in western Indian population reveals host genetic factors for COVID-19 severity and outcome // Genomics. 2022. V. 114. № 4. https://doi.org/10.1016/j.ygeno.2022.110399
- Słomian D., Szyda J., Dobosz P. et al. Better safe than sorry-Whole-genome sequencing indicates that missense variants are significant in susceptibility to COVID-19 // PLoS One. 2023. V. 18. № 1. https://doi.org/10.1371/journal.pone.0279356
- Horowitz J.E., Kosmicki J.A., Damask A. et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease // Nat. Genet. 2022. V. 54. № 4. P. 382–392. https://doi.org/10.1038/s41588-021-01006-7
- Zhao X., Wu X., Xiao J. et al. A large-scale genome-wide cross-trait analysis for the effect of COVID-19 on female-specific cancers // Science. 2023. V. 26. № 9. https://doi.org/10.1016/j.isci.2023.107497
- Peloso G.M., Tcheandjieu C., McGeary J.E. et al. Genetic loci associated with COVID-19 positivity and hospitalization in white, black, and hispanic veterans of the VA Million Veteran Program // Front. Genet. 2022. V. 12. https://doi.org/10.3389/fgene.2021.777076
- Pairo-Castineira E., Clohisey S., Klaric L. et al. Genetic mechanisms of critical illness in COVID-19 // Nature. 2021. № 591. № 7848. P. 92–98. https://doi.org/10.1038/s41586-020-03065-y
- Zhu D., Zhao R., Yuan H. et al. Host genetic factors, comorbidities and the risk of severe COVID-19 // J. Epidemiol. Glob. Health. 2023. V. 13. № 2. P. 279–291. https://doi.org/10.1007/s44197-023-00106-3
- Lin S., Gao X., Degenhardt F. et al. Genome-wide epistasis study highlights genetic interactions influencing severity of COVID-19 // Eur. J. Epidemiol. 2023. V. 38. № 8. P. 883–889. https://doi.org/10.1007/s10654-023-01020-5
- Wang Y., Guga S., Wu K. et al. COVID-19 and systemic lupus erythematosus genetics: A balance between autoimmune disease risk and protection against infection // PLoS Genet. 2022. V. 18. № 11. https://doi.org/10.1371/journal.pgen.1010253
- Huang Y.X., Tian T., Huang J.X. et al. A shared gene-tic contribution to osteoarthritis and COVID-19 outcomes: A large-scale genome-wide cross-trait analysis // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1184958
- Westerman K.E., Lin J., Sevilla-Gonzalez M.D.R. et al. Gene-environment interaction analysis incorporating sex, cardiometabolic diseases, and multiple deprivation index reveals novel genetic associations with COVID-19 severity // Front. Genet. 2022. V. 12. https://doi.org/10.3389/fgene.2021.782172
- Chung J., Vig V., Sun X. et al. Genome-wide pleiotropy study identifies association of PDGFB with age-related macular degeneration and COVID-19 infection outcomes // J. Clin. Med. 2022. V. 12. № 1. https://doi.org/10.3390/jcm12010109
- Qiu S., Zheng K., Hu Y., Liu G. Genetic correlation, causal relationship, and shared loci between vitamin D and COVID-19: A genome-wide cross-trait analysis // J. Med. Virol. 2023. V. 95. № 5. https://doi.org/10.1002/jmv.28780
- Severe Covid-19 GWAS Group, Ellinghaus D., Degenhardt F. et al. Genomewide association study of severe Covid-19 with respiratory failure // N. Engl. J. Med. 2020. V. 383. № 16. P. 1522–1534. https://doi.org/10.1056/NEJMoa2020283.
补充文件

