Alien Genetic Loci Influence Mineral Content in Grain of Synthetic Wheat Line
- 作者: Leonova N.N.1, Adonina I.G.1, Vinichenko N.А.1, Salina E.A.1, Shumny V.K.1
-
隶属关系:
- Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
- 期: 卷 61, 编号 9 (2025)
- 页面: 64-77
- 栏目: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://journals.rcsi.science/0016-6758/article/view/353929
- DOI: https://doi.org/10.7868/S3034510325090061
- ID: 353929
如何引用文章
详细
Synthetic introgression lines of hexaploid wheat (T. aestivum L.) are an important source of genetic loci for improving the mineral composition of bread wheat grain. Hybrid line 1102, obtained as a result of a complex hybridization scheme involving the species Aegilops speltoides Aegilops tauschii and Secale cereale, was used to map loci associated with the content of 10 macro- and microelements and heavy metals in grain – Ca, Mg, K, Cu, Fe, Zn, Mn, Cd, Cr, and Pb. Evaluation of parental samples used to create the mapping population (bread wheat variety Lutescens 85 and line 1102) in greenhouse and field conditions showed a reliable increase in the content of microelements Cu, Mn, Zn, Fe in the grain of line 1102 by 1.45, 1.44, 1.65 and 1.83 times, respectively comparing with varieties Lutescens 85. As a result of genotyping of the F2-3 population with SNP markers, 11 genetic loci were localized on chromosomes 2A, 2B, 3A, 3B, 4B, 5A, and 6A, significantly associated with the content of Ca, Mg, Zn, Fe, Pb and Cr in the grain. Comparison of SNP marker amplification patterns in parental samples suggests that loci QZn.1102-icg-2A, QCa.1102-icg-3A, QCr.1102-icg-3B, and QCr.1102-icg-4B may be of alien origin. The obtained results indicates that the synthetic line 1102 may contain genetic loci that promote the accumulation of toxic metals in grain such as lead and chromium.
作者简介
N. Leonova
Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: leonova@bionet.nsc.ru
Novosibirsk, 630090 Russia
I. Adonina
Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: leonova@bionet.nsc.ru
Novosibirsk, 630090 Russia
N. Vinichenko
Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: leonova@bionet.nsc.ru
Novosibirsk, 630090 Russia
E. Salina
Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: leonova@bionet.nsc.ru
Novosibirsk, 630090 Russia
V. Shumny
Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: leonova@bionet.nsc.ru
Novosibirsk, 630090 Russia
参考
- Shewry P.R. Wheat // J. Experimental Botany. 2009. V. 60. P. 1537–1553. https://doi.org/10.1093/jxb/erp058
- Siyuan S., Tong L., Liu R.H. Corn phytochemicals and their health benefits // Food Science and Human Wellness. 2018. V. 7. P. 185–195. https://doi.org/10.1016/j.fshw.2018.09.003
- Geng L., Li M., Zhang G., Ye L. Barley: A potential cereal for producing healthy and functional foods // Food Quality and Safety. 2022. V. 6. https://doi.org/10.1093/fqsafe/fyac012
- Németh R., Tömösközi S. Rye: Current state and future trends in research and applications // Acta Aliment. 2021. V. 50. P. 620–640. https://doi.org/10.1556/066.2021.00162
- Shewry P.R., Hawkesford M.J., Piironen V. et al. Natural variation in grain composition of wheat and related cereals // J. Agricultural and Food Chemistry. 2013. V. 61. P. 8295–8303. https://doi.org/10.1021/jf3054092
- Wang P., Jin Z., Xu X. Physicochemical alterations of wheat gluten proteins upon dough formation and frozen storage: A review from gluten, glutenin and gliadin perspectives // Trends in Food Sci. and Technol. 2015. V. 46. P. 189–198. https://doi.org/10.1016/j.tifs.2015.10.005
- Российский статистический ежегодник. Росстат, 2020. 700 с.
- Митрофанова О.П., Хакимова А.Г. Новые генетические ресурсы в селекции пшеницы на увеличение содержания белка в зерне // Вавиловский журнал генет. и сел. 2016. Т. 20. С. 545–554. https://doi.org/10.18699/vj16.177
- Мелешкина Е.П., Коломиец С.Н., Жильцова Н.С., Бундина О.И. Современная оценка хлебопекарных свойств российской пшеницы // Вестник ВГУИТ. 2021. Т. 83. С. 155–162. https://doi.org/10.20914/2310-1202-2021-1-155-162
- Bityutskii N., Yakkonen K., Loskutov I. Content of iron, zinc and manganese in grains of Triticum aestivum, Secale cereale, Hordeum vulgare and Avena sativa cultivars registered in Russia // Genet. Resour. Crop Evol. 2017. V. 64. P. 1955–1961. https://doi.org/10.1007/s10722-016-0486-9
- Леонова И.Н., Агеева Е.В., Шумный В.К. Перспективы биообогащения пшеницы минералами: классическая селекция и агрономия // Вавиловский журнал генет. и сел. 2024. Т. 28. С. 523–535. https://doi.org/10.18699/vjgb-24-59
- Голубкина Н.А., Синдиреева А.В., Зайцев В.Ф. Внутрирегиональная вариабельность селенового статуса населения Юга России: экология, развитие. 2017. Т. 12. С. 107–127. https://doi.org/ 10.18470/1992-1098-2017-1-107-127
- Davydenko N.I., Mayurnik L.A. On the possibility to grow high-selenium wheat in the Kuznetsk basin // Foods Raw Material. 2014. V. 2. P. 3–10. https://doi.org/10.12737/4089
- Zencirci N., Ulukan H., Baloch F.S. et al. Ancient Wheats. Switzerland: Springer International Publ., 2022. 267 p. https://doi.org/10.1007/978-3-031-07285-7
- Zeibig F., Kilian B., Özkan H. et al. Grain quality traits within the wheat (Triticum spp.) genepool: Рrospects for improved nutrition through de novo domestication // J. Sci. Food Agric. 2024. V. 104. P. 4400–4410. https://doi.org/10.1002/jsfa.13328
- Uauy C., Distelfeld A., Fahima T. et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat // Science. 2006. V. 314. P. 1298–1301. https://doi.org/10.1126/science.1133649
- Brevis J.C., Dubcovsky J. Effects of the chromosome region including the Gpc-B1 locus on wheat grain and protein yield // Crop Sci. 2010. V. 50. P. 93–104. https://doi.org/10.2135/cropsci2009.02.0057
- Peleg Z., Cakmak I., Ozturk L. et al. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population // Theor. Appl. Genet. 2009. V. 119. P. 353–369. https://doi.org/10.1007/s00122-009-1044-z
- Cabas-Lühmann P., Arriagada O., Matus I. et al. Comparison of durum with ancient tetraploid wheats from an agronomical, chemical, nutritional, and genetic standpoints: A review // Euphytica. 2023. V. 219. Article number 61. https://doi.org/10.1007/s10681-023-03188-z
- Velu G., Tutus Y., Gomez-Becerra H.F. et al. QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations // Plant Soil. 2017. V. 411. P. 81–99. https://doi.org/10.1007/s11104-016-3025-8
- Liu J., Huang L., Li T. et al. Genome-wide association study for grain micronutrient concentrations in wheat advanced lines derived from wild emmer // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.651283
- Jaradat A.A. Phenotypic and ionome profiling of Triticum aestivum × Aegilops tauschii introgression lines // Crop Sci. 2017. V. 57. P. 1916–1934. https://doi.org/10.2135/cropsci2016.09.0797
- Li A., Liu D., Yang W. et al. Synthetic hexaploid wheat: Yesterday, today, and tomorrow // Engineering. 2018. V. 4. P. 552–558. https://doi.org/10.1016/j.eng.2018.07.001
- Boehm J., Cai X. Enrichment and diversification of the wheat genome via alien introgression // Plants. 2024. V. 13. https://doi.org/10.3390/plants13030339
- Leonova I.N., Kiseleva A.A., Salina, E.A. Identification of genomic regions conferring enhanced Zn and Fe concentration in wheat varieties and introgression lines derived from wild relatives // Int. J. Mol. Sci. 2024. V. 25. https://doi.org/10.3390/ijms251910556
- Давоян Р.О., Бебякина И.В., Давоян Э.Р. и др. Изу- чение влияния транслокации T2DL.2DS-2SS и замещения 5S(5D) от Aegilops speltoides на селекционно-ценные признаки мягкой пшеницы // Вавиловский журнал генет. и сел. 2024. Т. 28. С. 506–514. https://doi.org/10.18699/vjgb-24-57
- Farkas A., Molnár I., Dulai S. et al. Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat- Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH // Genome. 2014. V. 57. P. 61–67. https://doi.org/10.1139/gen-2013-0204
- Савин Т.В., Абугалиева А.И., Чакмак И., Кожахметов K. Минеральный состав зерна диких сородичей и интрогрессивных форм в селекции пшеницы // Вавиловский журнал генет. и сел. 2018. Т. 22. С. 88–96. https://doi.org/10.18699/VJ18.335
- Molnár-Láng M., Linc G., Szakács É. Wheat-barley hybridization: The last 40 years // Euphytica. 2014. V. 195. P. 315–329. https://doi.org/10.1007/s10681-013-1009-9
- Owuoche J.O., Briggs K.G., Taylor G.J. The efficiency of copper use by 5A/5RL wheat-rye translocation lines and wheat (Triticum aestivum L.) cultivars // Plant Soil. 1996. V. 180. P. 113–120. https://doi.org/10.1007/BF00015417
- Lukaszewski A.J., Porter D.R., Baker C.A. et al. Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian triticales to wheat // Crop Sci. 2001. V. 41. P. 1743–1749. https://doi.org/10.2135/cropsci2001.1743
- Moskal K., Kowalik S., Podyma W. et al. The pros and cons of rye chromatin introgression into wheat genome // Agronomy. 2021. V. 11. https://doi.org/10.3390/agronomy11030456
- Адонина И.Г., Зорина М.В., Мехдиева С.П. и др. Характеристика синтетической линии пшеницы – потенциального источника хозяйственно ценных признаков // Письма в Вавил. журнал генет. и сел. 2023. Т. 9. С. 117–125. https://doi.org/10.18699/LettersVJ-2023-9-15
- Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers // Theor. Appl. Genet. 1995. V. 91. P. 1001–1007. https://doi.org/10.1007/BF00223912
- Ronin Y., Mester D., Minkov D. et al. Building ultra-high-density linkage maps based on efficient filtering of trustable markers // Genetics. 2017. V. 206. P. 1285–1295. https://doi.org/10.1534/genetics.116.197491
- Wang S., Wong D., Forrest K. et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array // Plant Biotechnol. J. 2014. V. 12. P. 787–796. https://doi.org/ 10.1111/pbi.12183
- Voorrips R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs // J. Hered. 2002. V. 93. P. 77–78. https://doi.org/10.1093/jhered/93.1.77
- Salina E.A., Leonova I.N., Efremova T.T., Röder M.S. Wheat genome structure: Тranslocations during the course of polyploidization // Funct. Integr. Geno- mics. 2006. V. 6. P. 71–80. https://doi.org/10.1007/s10142-005-0001-4
- Khlestkina E.K., Than M.H.M., Pestsova E.G. et al. Mapping of new 99 new microsatellite loci in rye (Secale cereale L.) including 39 expressed sequence tags // Theor. Appl. Genet. V. 109. P. 725–732. https://doi.org/10.1007/s00122-004-1659-z
- Beleggia R., Fragasso M., Miglietta F. et al. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations // Food Chem. 2018. V. 242. P. 53–61. https://doi.org/10.1016/j.foodchem.2017.09.012
- Леонова И.Н., Родер М.С., Калинина Н.П., Будашкина Е.Б. Генетический анализ и локализация локусов, контролирующих устойчивость интрогрессивных линий Triticum aestivum × Triticum timopheevii к листовой ржавчине // Генетика. 2008. Т. 44. № 12. С. 1652–1659. https://doi.org/10.1134/S1022795408120077
- Обущенко С.В., Гнеденко В.В. Мониторинг содержания микроэлементов и тяжелых металлов в почвах Самарской области // Междунар. журнал приклад. и фунд. исследований. 2014. № 7. С. 30–34.
- Бойко В.С., Якименко В.Н., Тимохин А.Ю. Плодородие черноземов Западной Сибири в системе орошаемого агроценоза // Плодородие. 2022. № 3. С. 39–42. https://doi.org/10.25680/S19948603.2022.126.11
- Börner A., Schumann E., Fürste A. et al. Mapping of quantitative trait loci determining agronomic impor- tant characters in hexaploid wheat (Triticum aesti- vum L.) // Theor. Appl. Genet. 2002. V. 105. P. 921–936. https://doi.org/10.1007/s00122-002-0994-1
- Morgounov A., Li H., Shepelev S. et al. Genetic characterization of spring wheat germplasm for macro-, microelements and trace metals // Plants. 2022. V. 11. https://doi.org/10.3390/plants11162173
- Sigalas P.P., Shewry, P.R., Riche A. et al. Improving wheat grain composition for human health by constructing a QTL atlas for essential minerals // Commun. Biol. 2024. V. 7. Article number. 1001. https://doi.org/10.1038/s42003-024-06692-7
- Gupta O.P., Singh A.K., Singh A. et al. Wheat biofortification: Utilizing natural genetic diversity, genome-wide association mapping, genomic selection, and genome editing technologies // Front. Nutr. 2022. V. 9. https://doi.org/10.3389/fnut.2022.826131
- Juliana P., Govindan V., Crespo-Herrera L. Genome-wide association mapping identifies key genomic regions for grain zinc and iron biofortification in bread wheat // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.903819
- Shi X., Zhou Z., Li W. et al. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.) // BMC Plant Biol. 2022. V. 22. Article number. 229. https://doi.org/10.1186/s12870-022-03602-z
- Bhatta M., Baenziger P., Waters B.M. et al. A genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat // Int. J. Mol. Sci. 2018. V. 19. https://doi.org/10.3390/ijms19103237
- Elkelish A., Alqudah A.M., Alomari D.Z. et al. Targe- ting candidate genes for the macronutrient accumulation of wheat grains for improved human nutrition // Cereal Res. Communications. 2024. https://doi.org/org/10.1007/s42976-024-00566-8
- Hussain B., Lucas S.J., Ozturk L., Budak H. Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat // Sci. Rep. 2017. V. 7. Article number. 15662. https://doi.org/10.1038/s41598-017-15726-6
- Krishnappa G., Rathan N.D., Sehgal D. et al. Identification of novel genomic regions for biofortification traits using an SNP marker-enriched linkage map in wheat (Triticum aestivum L.) // Front. Nutr. 2021. V. 8. https://doi.org/10.3389/fnut.2021.669444
- Kaur H., Sharma P., Kumar J. et al. Genetic analysis of iron, zinc and grain yield in wheat-Aegilops derivatives using multi-locus GWAS // Mol. Biol. Rep. 2023. V. 50. P. 9191–9202. https://doi.org/10.1007/s11033-023-08800-y
- Mourad A.M.I., Sallam A., Farghaly K.A., Börner A. Detailed genetic analyses highlight genetic variation and genomic regions for lead tolerance in spring wheat // Front. Agron. 2025. V. 7. https://doi.org/10.3389/fagro.2025.1428366
- Wang W., Guo H., Wu C. et al. Identification of novel genomic regions associated with nine mineral elements in Chinese winter wheat grain // BMC Plant Biol. 2021. V. 21. Article number. 311. https://doi.org/10.1186/s12870-021-03105-3
- Almas F., Hassan A., Bibi A. et al. Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.) // Plant Soil. 2018. V. 422. P. 371–384. https://doi.org/10.1007/s11104-017-3436-1
补充文件

