Multifoliate alfalfa: its causes and influence

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An increase in the leafiness of protein-rich alfalfa (Medicago) is possible not only through selection to change the size of the leaf blade. Some of the first reports on the study of the phenomenon of the formation of additional leaves, afterwards called multifoliate, date back to the 30 years of the XX century. This review article mentions the main articles related to the study of the trait. The structure of the leaf is described and information is collected on the correlations of multifoliate with height, internodes, day length and temperature. The influence of germplasm and research methods on obtaining contradictory data is indicated. The assumptions initially put forward by researchers about the atavistic nature of the manifestation of the trait, and later about the presence of a recessive mutation with 2 additive genes regulating expression, are considered. The method of finding the index of evaluation of the expression of multifoliate proposed by Craig Sheaffer and confirming the strong character of inheritance of the trait in classical selection through recurrent selection is shown. In conclusion, the most significant genes and gene families that directly or indirectly affect the manifestation of multifoliate, including PALM1 and KNOX, are collected.

全文:

受限制的访问

作者简介

N. Barsukov

Federal Williams Research Center of Forage Production and Agroecology; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

编辑信件的主要联系方式.
Email: keepter@yandex.ru
俄罗斯联邦, Moscow oblast, Lobnya, 141055; Moscow, 127434

E. Leonova

Federal Williams Research Center of Forage Production and Agroecology; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Email: keepter@yandex.ru
俄罗斯联邦, Moscow oblast, Lobnya, 141055; Moscow, 127434

I. Zaitsev

Federal Williams Research Center of Forage Production and Agroecology; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Email: keepter@yandex.ru
俄罗斯联邦, Moscow oblast, Lobnya, 141055; Moscow, 127434

参考

  1. Пикун, П.Т. Люцерна и ее возможности. Минск: Беларус. навука, 2012. 310 с.
  2. Di Giacomo E., Sestili F., Iannelli М. et al. Characterization of KNOX genes in Medicago truncatula // Plant Mol. Biol. 2008. V. 67. P. 135–150. https://doi.org/10.1007/s11103-008-9307-7
  3. Донских Н.А. Устойчивость сортов люцерны изменчивой к болезням и вредителям при возделывании их в одновидовых и смешанных посевах // Вест. cтуд. науч. общества. 2017. Т. 8. № 1. С. 74–76.
  4. Sheaffer C.C., Evers G.W., Jungers J.M. Cool‐season legumes for humid areas // Forages: The Sci. of Grassland Agriculture. 2020. V. 2. P. 263–275. https://doi.org/10.1002/9781119436669.ch14
  5. Степанова Г.В. Сорт люцерны изменчивой Таисия // Адаптивное кормопроизводство. 2020. № 2. С. 21–32. https://doi.org/10.33814/AFP-2222-5366-2020-2-21-32
  6. Степанова Г.В. Методы и результаты сопряженной симбиотической селекции люцерны // Методы и технологии в селекции растений и растениеводстве. 2015. С. 230–234.
  7. Степанова Г.В. Урожайность сортов люцерны изменчивой в стрессовых погодных условиях // Многофункциональное адаптивное кормопроизводство. 2022. С. 70–79. https://doi.org/10.33814/MAK-2022-28-76-70-79
  8. Radović J., Sokolović D., Marković J. Alfalfa-most important perennial forage legume in animal husbandry // Biotechnol. in Animal Husbandry. 2009. V. 25. № 5-6-1. P. 465–475. https://doi.org/10.2298/BAH0906465R
  9. Степанова, Г.В. Влияние погодных условий на химический состав сухого вещества люцерны (Medicago varia Mart.) в фазу цветения // Адаптивное кормопроизводство. 2019. № 2. С. 26–39. https://doi.org/10.33814/AFP-2222-5366-2019-2-26-39
  10. Liu L.Y., Jia Y.S., Fan W.Q. et al. An investigation of the main environmental factors affecting the natural drying of alfalfa for hay, and hay quality // Acta Prataculturae Sinica. 2022. V. 31. № 2. P. 121. https://doi.org/10.11686/cyxb2020529
  11. Liu L Y., Fa W.Q., Cheng Q.M. et al. Multi-omics analyses reveal new insights into nutritional quality changes of alfalfa leaves during the flowering period // Front. in Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.995031
  12. Lui A.C., Lam P.Y., Chan K.H. et al. Convergent recruitment of 5′‐hydroxylase activities by CYP75B flavonoid B‐ring hydroxylases for tricin biosynthesis in Medicago legumes // New Phytologist. 2020. V. 228. № 1. P. 269–284. https://doi.org/10.1111/nph.16498
  13. Grev A.M., Wells M.S., Catalano D.N. et al. Stem and leaf forage nutritive value and morphology of reduced lignin alfalfa // Agronomy J. 2020. V. 112. № 1. P. 406–417. https://doi.org/10.1002/agj2.20011
  14. Putnam D.H. Factors influencing yield and quality in alfalfa // The Alfalfa Genome. Cham: Springer, 2021. P. 13–27. https://doi.org/10.1007/978-3-030-74466-3_2
  15. Wang T., Zhang W.H. Priorities for the development of alfalfa pasture in northern China // Fund. Research. 2023. V. 3. № 2. P. 225–228. https://doi.org/10.1016/j.fmre.2022.04.017
  16. Косолапова В.Г., Муссие С.А. Питательная ценность люцерны различных сортов в процессе роста и развития // Кормопроизводство. 2020. № 10. С. 17–24.
  17. Шамсутдинов З.Ш., Писковацкий Ю.М., Новоселов М.Ю. и др. Селекция и семеноводство кормовых культур в России: результаты и стратегические направления // Адаптивное кормопроизводство. 2014. № 2. С. 12–23.
  18. Чернявских В.И., Думачева Е.В., Бородаева Ж.А. Основные направления селекции и семеноводства люцерны в Европейской России // Plant Gen. 2019. С. 247. https://doi.org/10.18699/PlantGen2019-229
  19. Мокеева Е.А. Биолого-анатомическое исследование люцерны (Medicago sativa L.). Ташкент: Гос. с.-х. изд-во УзССР, 1940. 122 с.
  20. Bingham E.T., Murphy R.P. Breeding and morphological studies on multifoliolate selections of alfalfa, Medicago sativa L. // Crop Sci. 1965. V. 5. № 3. P. 233–235. https://doi.org/10.2135/cropsci1965. 0011183X000500030010x
  21. Sheaffer C.C., McCaslin M., Volenec J.J. et al. Multifoliolate leaf expression (leaves with greater than 3 leaflets leaf) // Standard Tests Bull. N. Am. Alfalfa Improvement Conf. 1995.
  22. Stefanov D., Petkova D., Marinova D. et al. Photosynthetic characteristics of multifoliolate alafalfa leaves // Comptes Rendus de l’Académie Bulgare des Sciences. 2013. V. 66. № 7. https://doi.org/10.7546/CR-2013-66-7-13101331-12
  23. Popescu S., Boldura O., Ciulca S. Evaluation of the genetic variability correlated with multileaflet trait in alfalfa // AgroLife Sci. J. 2016. V. 5. № 2. P. 125–130.
  24. Bauder W.W. The Inheritance of the Odd-leaf Character in Medicago sp. Lincoln: Univ. Nebraska, 1938.
  25. Brick M.A. A Genetic Study of the Multifoliolate Characteristic in Alfalfa (Medicago sativa L.) // Tucson: Univ. Arizona, 1975.
  26. Bingham E.T. A Genetical and Morphological Investigation of Multifoliolate Leaves of Alfalfa, Medicago sativa L. Ithaca: Cornell Univ., 1964.
  27. Azizi M.R. Inheritance of the Multifoliolate Trait in Tetraploid Alfalfa, Medicago sativa L. Tucson: Univ. Arizona, 1980.
  28. Bingham E. T. Morphology and petiole vasculature of five heritable leaf forms in Medicago sativa L. // Bot. Gazette. 1966. V. 127. №. 4. P. 221–225.
  29. Bingham E. T., Binek A. Hexaploid alfalfa, Medicago sativa L.: origin, fertility and cytology // Canad. J. Genet. and Cytol. 1969. V. 11. № 2. P. 359–366.
  30. Ferguson J.E., Murphy R.P. Comparison of trifoliolate and multifoliolate phenotypes of alfalfa (Medicago sativa L.) // Crop Sci. 1973. V. 13. № 4. P. 463–465.
  31. Brick M.A., Dobrenz A.K., Schonhorst M.H. Transmittance of the multifoliolate leaf characteristic into non-dormant alfalfa 1 // Agronomy J. 1976. V. 68. № 1. P. 134–136. https://doi.org/10.2134/agronj1976.00021962006800010037x
  32. Juan N.A., Sheaffer C.C., Barnes D.K. Temperature and photoperiod effects on multifoliolate expression and morphology of alfalfa // Crop Sci. 1993. V. 33. № 3. P. 573–578. https://doi.org/10.2135/cropsci1993. 0011183X003300030030x
  33. Cherniavskih V.I., Dumacheva E.V., Borodaeva Z.A., Markova E.I. Leaf-spotting diseases as a matter of damage of alfalfa breeding populations in an evident multifoliate phase in different cycles of phenotypic recurrent selection // J. Physics: Conference Series. 2021. V. 1942. № 1. https://doi.org/10.1088/1742-6596/1942/1/012081
  34. Чернявских В.И., Бородаева Ж.А., Думачева Е.В. Устойчивость сортопопуляций Medicago varia Mart. к листовым пятнистостям в экотопах юга среднерусской возвышенности // Аграрная наука. 2019. Т. 1. С. 109–112. https://doi.org/10.32634/0869-8155-2019-326-1-109-112
  35. Singh L., Pierce C., Santantonio N. et al. Validation of DNA marker-assisted selection for forage biomass productivity under deficit irrigation in alfalfa // The Plant Genome. 2022. V. 15. № 1. https://doi.org/10.1002/tpg2.20195
  36. Lin S., Medina C.A., Boge B. et al. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.) // BMC Plant Biology. 2020. V. 20. № 1. P. 1–18. https://doi.org/10.1186/s12870-020-02520-2
  37. Wu Z.N., Wei Z.W., Hou X.Y. et al. Study on photosynthetic characteristics and compound leaf ultrastructure of mutlifoliate alfalfa // Acta Agrestia Sinica. 2015. V. 23. № 2. P. 223. https://doi.org/10.11733/j.issn.1007-0435.2015.02.001
  38. Odorizzi A., Mamani E.M.C., Sipowicz P. et al. Effect of phenotypic recurrent selection on genetic diversity of non-dormant multifoliolate lucerne (Medicago sativa L.) populations // Crop and Pasture Sci. 2015. V. 66. № 11. P. 1190–1196. https://doi.org/10.1071/CP14280
  39. Odorizzi A., Arolfo V., Basigalup D.H. A very non-dormant alfalfa (Medicago sativa L.) with high multifoliolate expression // Second World Alfalfa Congress. Argentina: Cordoba. 2018. P. 120–124.
  40. Chen H., Zeng Y., Yang Y. et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa // Nat. Communications. 2020. V. 11. № 1. P. 2449 https://doi.org/10.1038/s41467-020-16338-x
  41. Bao A., Burrit D.J., Chen H. et al. The CRISPR/Cas9 system and its applications in crop genome editing // Critical Rev. in Biotechnology. 2019. V. 39. № 3. P. 321–336. https://doi.org/10.1080/07388551.2018.1554621
  42. Chen J., Yu J., Ge L. et al. Control of dissected leaf morphology by a Cys (2) His (2) zinc finger transcription factor in the model legume Medicago truncatula // Proc. Natl Acad. Sci. USA. 2010. V. 107. № 23. P. 10754–10759. https://doi.org/10.1073/pnas.1003954107
  43. Min X., Luo K., Liu W. et al. Molecular characterization of the miR156/MsSPL model in regulating the compound leaf development and abiotic stress response in alfalfa // Genes. 2022. V. 13. № 2. https://doi.org/10.3390/genes13020331
  44. Hobert O. Gene regulation by transcription factors and microRNAs // Science. 2008. V. 319. № 5871. P. 1785–1786. https://doi.org/10.1126/science.1151651
  45. Wang H., Kong F., Zhou C. From genes to networks: The genetic control of leaf development // J. Integrative Plant Biol. 2021. V. 63. № 7. P. 1181–1196. https://doi.org/10.1111/jipb.13084
  46. Gómez C., Jozefkowicz C., Mozzicafreddo M. et al. The Gln15Arg mutation in the transcriptional factor PALM1 produces multifoliate alfalfa // Plant Cell, Tissue and Organ Culture (PCTOC). 2023. V. 152. № 3. P. 677–681. https://doi.org/10.1007/s11240-022-02429-8
  47. Bar M., Ori N. Leaf development and morphogenesis // Development. 2014. V. 141. № 22. P. 4219–4230. https://doi.org/10.1242/dev.106195
  48. Boldura O.M., Popescu S. KNOX genes expression as a marker of the multileaflet trait in alfalfa // Curr. Op. in Biotechnology. 2013. № 24. P. S124. https://doi.org/10.1016/j.copbio.2013.05.394
  49. Popesc S., Boldura O. M., Botau D. The KNOX genes involvement in the development of multileafled trait on tetraploid Medicago sativa // 14th Int. Multidisciplinary Sci. Geoconf. SGEM 2014. Sofia: STEF92 Technology, 2014. V. 1. P. 551–558. https://doi.org/10.5593/SGEM2014/B61/S25.075
  50. Sorina P., Oana-Maria I.B. The six KNOX genes identification on tetraploid Medicago sativa, based on the model plant resources // Romanian Biotechnol. Letters. 2010. V. 15. № 2. P. 33.
  51. Gehring W.J., Hiromi Y. Homeotic genes and the homeobox // Annual Review Genet. 1986. V. 20. № 1. P. 147–173. https://doi.org/10.1146/annurev.ge.20.120186.001051
  52. Ori N., Eshed Y., Chuck G. et al. Mechanisms that control KNOX gene expression in the Arabidopsis shoot // Development. 2000. V. 127. № 24. P. 5523–5532. https://doi.org/10.1242/dev.127.24.5523
  53. Champagne C.E., Goliber T.E., Wojciechowski M.F. et al. Compound leaf development and evolution in the legumes // The Plant Cell. 2007. V. 19. № 11. P. 3369–3378. https://doi.org/10.1105/tpc.107.052886
  54. Moghaddam M., Kazempour-Osaloo S. Extensive survey of the ycf 4 plastid gene throughout the IRLC legumes: Robust evidence of its locus and lineage specific accelerated rate of evolution, pseudogenization and gene loss in the tribe Fabeae // PLoS One. 2020. V. 15. № 3. https://doi.org/10.1371/journal.pone.0229846
  55. Di Giacomo E., Sestili F., Iannelli M.A. et al. Characterization of KNOX genes in Medicago truncatula // Plant Mol. Biol. 2008. V. 67. P. 135–150. https://doi.org/10.1007/s11103-008-9307-7
  56. Hofer J., Gourlay C., Michael A., Ellis T.N. Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia // Plant Mol. Biol. 2001. V. 45. P. 387–398. https://doi.org/10.1023/A:1010739812836
  57. Wang Y., Ruan Q., Zhu X. et al. Identification of alfalfa SPL gene family and expression analysis under biotic and abiotic stresses // Sci. Reports. 2023. V. 13. № 1. P. 84. https://doi.org/10.1038/s41598-022-26911-7
  58. Jozefkowicz C., Gómez C., Odorizzi A. et al. Expanding the benefits of Tnt1 for the identification of dominant mutations in polyploid crops: A single allelic mutation in the MsNAC39 gene produces multifoliated alfalfa // Front. in Plant Sci. 2021. V. 12. P. 3074.
  59. Mallory A.C., Dugas D.V., Bartel D.P., Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs // Curr. Biol. 2004. V. 14. № 12. P. 1035–1046. https://doi.org/10.1016/j.cub.2004.06.022
  60. Rubio-Somoza I., Zhou C.M., Confraria A. et al. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes // Curr. Biol. 2014. V. 24. № 22. P. 2714–2719. http://dx.doi.org/10.1016/j.cub.2014.09.058
  61. Zhou C., Han L., Zhao Y. et al. Transforming compound leaf patterning by manipulating REVOLUTA in Medicago truncatula // Plant J. 2019. V. 100. № 3. P. 562–571. https://doi.org/10.1111/tpj.14469
  62. Бородаева Ж. А. Анализ исходного материала люцерны изменчивой в различных экотопах центрально-черноземного региона // Многофункциональное адаптивное кормопроизводство. 2022. С. 80–86.
  63. Cherniavskih V. I., Dumacheva E. V., Borodaeva Z. A. et al. Features of intra population variability of Medicago varia Mart. with the expressed mf-mutation on a complex qualitative characteristics // EurAsian J. BioSciences. 2019. V. 13. № 2. P. 733–737.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Illustration of a triple leaf, made according to Fig. 12 from the work of E.A. Mokeeva [19, p. 26] a – general plan of the leaf with vessels and veins; b – close-up of the divergence of the bundles of lateral and upper leaflets on the second and third branches, respectively.

下载 (17KB)
3. Fig. 2. Variation of leaves on one of the samples of the alfalfa breeding laboratory: wild type – a (three leaves); multi-leafed – b, c, d, e (from four to seven leaves, respectively).

下载 (13KB)
4. Fig. 3. Leaves with different structures: a, b – splitting of the upper leaflet; c – divergence of the lateral leaflets; d – “loss” of the lateral leaf; e – arrangement of several leaflets on one petiole. Probably, the presence of brown spotting on the leaves is due to their late collection, 08/31/2023.

下载 (11KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##