Peculiarities of Transcriptional Activity of Long Non-Coding RNAs (COOLAIR, COLDAIR, and COLDWRAP) during the Vernalization of the Plant Arabidopsis thaliana of Northern Natural Populations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Peculiarities of the lncRNA expression – COOLAIR, COLDAIR, and COLDWRAP, which perform an important function in the vernalization-mediated epigenetic mechanism of the transition to flowering in A. thaliana plants of northern natural populations (Karelia), were revealed. The results obtained are partly differ from the data of other authors performing studies on pure lines and other ecotypes of this species. It is suggested that the genetic and epigenetic mechanisms involved in the process of vernalization and control of flowering times may differ in plant populations from different geographic regions.

作者简介

M. Zaretskaya

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

编辑信件的主要联系方式.
Email: genmg@mail.ru
Russia, 185910, Petrozavodsk

O. Lebedeva

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

Email: fedorenko_om@mail.ru
Russia, 185910, Petrozavodsk

O. Fedorenko

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

编辑信件的主要联系方式.
Email: fedorenko_om@mail.ru
Russia, 185910, Petrozavodsk

参考

  1. Dennis E.S., Peacock W.J. Epigenetic regulation of flowering // Curr. Opin. Plant Biol. 2007. V. 10(5). P. 520–527. https://doi.org/10.1016/j.pbi.2007.06.009
  2. Marquardt S., Raitskin O., Wu Z. et al. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription // Mol. Cell. 2014. V. 54(1). P. 156–165. https://doi.org/10.1016/j.molcel.2014.03.026
  3. Rosa St., Duncan S., Dean C. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression // Nat. Commun. 2016. V. 7. https://doi.org/10.1038/ncomms13031
  4. Chen M., Penfield St. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time // Science. 2018. V. 360. P. 1014–1017. https://doi.org/10.1126/sience.aar7361
  5. Zhao Y., Zhu P., Hepworth J. et al. Natural temperature fluctuations promote COOLAIR regulation of FLC // Genes Dev. 2021. V. 35(11, 12). P. 888–898. https://doi.org/10.1101/gad.348362.121
  6. Heo J.B., Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA // Science. 2011. V. 331. P. 76–79.
  7. Kim D.H., Sung S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs // Developmental Cell. 2017. V. 40. P. 302–312. https://doi.org/10.1016/j.devcel.2016.12.021
  8. Федоренко О.М., Топчиева Л.В., Зарецкая М.В., Лебедева О.Н. Динамика экспрессии FLC и VIN3 в процессе яровизации растений Arabidopsis thaliana северных природных популяций // Генетика. 2019. Т. 55. № 7. С. 811–818. https://doi.org/10.1134/S0016675819060031
  9. Choi J., Hyun Y., Kang M.J. et al. Resetting and regulation of Flowering Locus C expression during Arabidopsis reproductive development // Plant J. 2009. V. 57. P. 918–931. https://doi.org/10.1111/j.1365-313X.2008.03776.x
  10. Иванов В.И., Касьяненко А.Г., Санина А.В. и др. Краткая характеристика A. thaliana и некоторые сведения о его культивировании, технике скрещиваний и учете изменчивости // Генетика. 1966. Т. 8. С. 115–120.
  11. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆Ct method // Methods. 2001. V. 25. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  12. Kranz A.R., Kircheim B. Genetic resources in Arabidopsis // AIS. 1987. № 24. P. 20.
  13. Федоренко О.М., Грицких М.В., Николаевская Т.С. Полиморфизм по времени начала цветения у Arabidopsis thaliana (L.) Heynh. на северной границе его ареала // Тр. КарНЦ РАН. Серия эксперим. биология. 2012. № 2. С. 139–146.
  14. Курбидаева А.С., Зарецкая М.В., Солтабаева А.Д. и др. Генетические механизмы адаптации растений Arabidopsis thaliana (L.) Heynh. к экстремальным условиям северной границы ареала // Генетика. 2013. Т. 49. № 8. С. 943–953. https://doi.org/10.7868/S0016675813080092
  15. Kuittinen H., Sillanpaa M.J., Savolainen O. Genetic basis of adaptation: Flowering time in Arabidopsis thaliana // Theor. Appl. Genet. 1997. V. 95. P. 573–583.
  16. Shindo C., Lister C., Crevillen P. et al. Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response // Genes and Development. 2006. V. 20. P. 3079–3083. https://doi.org/10.1101/gad.405306
  17. Lee I., Amasino R.M. Effect of vernalization, photoperiod and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene // Plant Physiol. 1995. V. 108. P. 157–162.
  18. Coustham V., Li P., Strange A. et al. Quantitative modulation of polycomb silencing underlines natural variation in vernalization // Science. 2012. V. 337. P. 584–587. https://doi.org/10.1126/science.1221881
  19. Duncan S., Holm S., Questa J. et al. Seasonal shift in timing of vernalization as an adaptation to extreme winter // ELIFE. 2015. V. 23. № 4. https://doi.org/10.7554/eLife.06620
  20. Saleh A., Alvarez-Venegas R., Avramova Z. Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci // Gene. 2008. V. 423. P. 43–47. https://doi.org/10.1016/j.gene.2008.06.022
  21. Sheldon C.C., Hills M.J., Lister C. et al. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization // Proc. Natl Acad. Sci. USA. 2008. V. 105. P. 2214–2219.https://doi.org/10.1073/pnas.0711453105
  22. Chiang G.C.K., Barua D., Kramer E.M. et al. Major flowering time gene, Flowering Locus C, regulates seed germination in Arabidopsis thaliana // PNAS. 2009. V. 106. № 28. P. 11661–1666. https://doi.org/10.1073/pnas.090367106
  23. Ausin L., Alonso-Blanco C., Martinez-Zapater J.M. Regulation of flowering time by FVE, a retinoblastoma-associated protein // Nat. Genet. 2004. V. 36. P. 162–166.
  24. Maruoka T., Gan E.S., Otsuka N. et al. Histone demethylases JMJ30 and JMJ32 modulate the speed of vernalization through the activation of FLOWERING LOCUS C in Arabidopsis thaliana // Front. Plant Sci. 2022 V. 13. P. 837831–837839. https://doi.org/10.3389/fpls.2022.837831

补充文件

附件文件
动作
1. JATS XML
2.

下载 (728KB)
3.

下载 (274KB)
4.

下载 (410KB)

版权所有 © М.В. Зарецкая, О.Н. Лебедева, О.М. Федоренко, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».