Peculiarities of Transcriptional Activity of Long Non-Coding RNAs (COOLAIR, COLDAIR, and COLDWRAP) during the Vernalization of the Plant Arabidopsis thaliana of Northern Natural Populations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Peculiarities of the lncRNA expression – COOLAIR, COLDAIR, and COLDWRAP, which perform an important function in the vernalization-mediated epigenetic mechanism of the transition to flowering in A. thaliana plants of northern natural populations (Karelia), were revealed. The results obtained are partly differ from the data of other authors performing studies on pure lines and other ecotypes of this species. It is suggested that the genetic and epigenetic mechanisms involved in the process of vernalization and control of flowering times may differ in plant populations from different geographic regions.

作者简介

M. Zaretskaya

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

编辑信件的主要联系方式.
Email: genmg@mail.ru
Russia, 185910, Petrozavodsk

O. Lebedeva

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

Email: fedorenko_om@mail.ru
Russia, 185910, Petrozavodsk

O. Fedorenko

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

编辑信件的主要联系方式.
Email: fedorenko_om@mail.ru
Russia, 185910, Petrozavodsk

参考

  1. Dennis E.S., Peacock W.J. Epigenetic regulation of flowering // Curr. Opin. Plant Biol. 2007. V. 10(5). P. 520–527. https://doi.org/10.1016/j.pbi.2007.06.009
  2. Marquardt S., Raitskin O., Wu Z. et al. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription // Mol. Cell. 2014. V. 54(1). P. 156–165. https://doi.org/10.1016/j.molcel.2014.03.026
  3. Rosa St., Duncan S., Dean C. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression // Nat. Commun. 2016. V. 7. https://doi.org/10.1038/ncomms13031
  4. Chen M., Penfield St. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time // Science. 2018. V. 360. P. 1014–1017. https://doi.org/10.1126/sience.aar7361
  5. Zhao Y., Zhu P., Hepworth J. et al. Natural temperature fluctuations promote COOLAIR regulation of FLC // Genes Dev. 2021. V. 35(11, 12). P. 888–898. https://doi.org/10.1101/gad.348362.121
  6. Heo J.B., Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA // Science. 2011. V. 331. P. 76–79.
  7. Kim D.H., Sung S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs // Developmental Cell. 2017. V. 40. P. 302–312. https://doi.org/10.1016/j.devcel.2016.12.021
  8. Федоренко О.М., Топчиева Л.В., Зарецкая М.В., Лебедева О.Н. Динамика экспрессии FLC и VIN3 в процессе яровизации растений Arabidopsis thaliana северных природных популяций // Генетика. 2019. Т. 55. № 7. С. 811–818. https://doi.org/10.1134/S0016675819060031
  9. Choi J., Hyun Y., Kang M.J. et al. Resetting and regulation of Flowering Locus C expression during Arabidopsis reproductive development // Plant J. 2009. V. 57. P. 918–931. https://doi.org/10.1111/j.1365-313X.2008.03776.x
  10. Иванов В.И., Касьяненко А.Г., Санина А.В. и др. Краткая характеристика A. thaliana и некоторые сведения о его культивировании, технике скрещиваний и учете изменчивости // Генетика. 1966. Т. 8. С. 115–120.
  11. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆Ct method // Methods. 2001. V. 25. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  12. Kranz A.R., Kircheim B. Genetic resources in Arabidopsis // AIS. 1987. № 24. P. 20.
  13. Федоренко О.М., Грицких М.В., Николаевская Т.С. Полиморфизм по времени начала цветения у Arabidopsis thaliana (L.) Heynh. на северной границе его ареала // Тр. КарНЦ РАН. Серия эксперим. биология. 2012. № 2. С. 139–146.
  14. Курбидаева А.С., Зарецкая М.В., Солтабаева А.Д. и др. Генетические механизмы адаптации растений Arabidopsis thaliana (L.) Heynh. к экстремальным условиям северной границы ареала // Генетика. 2013. Т. 49. № 8. С. 943–953. https://doi.org/10.7868/S0016675813080092
  15. Kuittinen H., Sillanpaa M.J., Savolainen O. Genetic basis of adaptation: Flowering time in Arabidopsis thaliana // Theor. Appl. Genet. 1997. V. 95. P. 573–583.
  16. Shindo C., Lister C., Crevillen P. et al. Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response // Genes and Development. 2006. V. 20. P. 3079–3083. https://doi.org/10.1101/gad.405306
  17. Lee I., Amasino R.M. Effect of vernalization, photoperiod and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene // Plant Physiol. 1995. V. 108. P. 157–162.
  18. Coustham V., Li P., Strange A. et al. Quantitative modulation of polycomb silencing underlines natural variation in vernalization // Science. 2012. V. 337. P. 584–587. https://doi.org/10.1126/science.1221881
  19. Duncan S., Holm S., Questa J. et al. Seasonal shift in timing of vernalization as an adaptation to extreme winter // ELIFE. 2015. V. 23. № 4. https://doi.org/10.7554/eLife.06620
  20. Saleh A., Alvarez-Venegas R., Avramova Z. Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci // Gene. 2008. V. 423. P. 43–47. https://doi.org/10.1016/j.gene.2008.06.022
  21. Sheldon C.C., Hills M.J., Lister C. et al. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization // Proc. Natl Acad. Sci. USA. 2008. V. 105. P. 2214–2219.https://doi.org/10.1073/pnas.0711453105
  22. Chiang G.C.K., Barua D., Kramer E.M. et al. Major flowering time gene, Flowering Locus C, regulates seed germination in Arabidopsis thaliana // PNAS. 2009. V. 106. № 28. P. 11661–1666. https://doi.org/10.1073/pnas.090367106
  23. Ausin L., Alonso-Blanco C., Martinez-Zapater J.M. Regulation of flowering time by FVE, a retinoblastoma-associated protein // Nat. Genet. 2004. V. 36. P. 162–166.
  24. Maruoka T., Gan E.S., Otsuka N. et al. Histone demethylases JMJ30 and JMJ32 modulate the speed of vernalization through the activation of FLOWERING LOCUS C in Arabidopsis thaliana // Front. Plant Sci. 2022 V. 13. P. 837831–837839. https://doi.org/10.3389/fpls.2022.837831

补充文件

附件文件
动作
1. JATS XML
2.

下载 (728KB)
3.

下载 (274KB)
4.

下载 (410KB)

版权所有 © М.В. Зарецкая, О.Н. Лебедева, О.М. Федоренко, 2023

##common.cookie##