НОВЫЕ МАРКЕРЫ МИТОХОНДРИАЛЬНОЙ ДНК ДЛЯ ИССЛЕДОВАНИЯ ПОПУЛЯЦИОННОЙ СТРУКТУРЫ ЕЛЕЙ СИБИРСКОЙ И ЕВРОПЕЙСКОЙ
- Авторы: Семериков В.Л.1
-
Учреждения:
- Институт экологии растений и животных Уральского отделения Российской академии наук
- Выпуск: Том 61, № 9 (2025)
- Страницы: 56-63
- Раздел: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://journals.rcsi.science/0016-6758/article/view/353928
- DOI: https://doi.org/10.7868/S3034510325090051
- ID: 353928
Цитировать
Аннотация
На основе митохондриального генома ели европейской были разработаны праймеры для амплификации шести минисателлитных и одного микросателлитного локуса. Их тестирование на шести популяциях ели сибирской и северного кластера ели европейской (120 деревьев) выявили от трех до семи аллелей. Мультилокусная комбинация шести минисателлитов в сумме дала 27 гаплотипов. Популяции имели от двух до девяти гаплотипов, но почти не имели общих, они разделились (RCT = 0.77) на три группы – Европейская Россия, Урал и популяция ели сибирской (Алтай). В популяции, расположенной на верхнем пределе лесной растительности на Южном Урале, гаплотипы располагались не случайно, что демонстрирует возможность использования разработанных маркеров для выделения групп родственных по материнской линии деревьев, а также исследования процесса расселения деревьев на не занятых лесом территориях. В популяции из южного кластера ели европейской (Карпаты, 24 дерева) только один из маркеров имел устойчивую амплификацию и был изменчив (шесть аллелей).
Об авторах
В. Л. Семериков
Институт экологии растений и животных Уральского отделения Российской академии наук
Автор, ответственный за переписку.
Email: semerikov@ipae.uran.ru
Екатеринбург, 620144 Россия
Список литературы
- Naydenov K., Senneville S., Beaulieu J. et al. Glacial vicariance in Eurasia: Mitochondrial DNA evidence from Scots pine for complex heritage involving gene- tically distinct refugia at mid-northern latitudes and in Asia Minor // BMC Evol. Biol. 2007. V. 22. https://doi.org/10.1186/1471-2148-7-233
- Pyhäjärvi T., Salmela M., Savolainen O. Colonozation routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation // Tree Genetics & Genomes. 2008. V. 4. P. 247–254. https://doi.org/10.1007/s11295-007-0105-1
- Semerikov N.V., Petrova I.V., Sannikov S.N. et al. Cytoplasmic DNA variation does not support a recent contribution of Pinus sylvestris L. from the Caucasus to the main range // Tree Genetics & Genomes. 2020. V. 16. № 4. https://doi.org/10.1007/s11295-020-01458-8
- Shuvaev D.N., Semerikov V.L., Kuznetsova G.V., Putintseva Y.A. Late Quaternary history of Siberian stone pine as revealed by genetic and paleoecological data // Tree Genetics & Genomes. 2023. V. 19. № 2. https://doi.org/10.1007/s11295-023-01592-z
- Sperisen C., Büchler U., Gugerli F. et al. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce // Mol. Ecol. 2001. V. 10. № 1. P. 257–263. https://doi.org/10.1046/j.1365-294X.2001.01180.x
- Tollefsrud M.M., Kissling R., Gugerli F. et al. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: Сombined analysis of mitochondrial DNA and fossil pollen // Mol. Ecol. 2008. V. 17. № 18. P. 4134–4150. https://doi.org/10.1111/j.1365-294X.2008.03893.x
- Tollefsrud M.M., Sonstebo J.H., Brochmann C. et al. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies // Heredity. 2009. V. 102. № 6. P. 549–562. https://doi.org/10.1038/hdy.2009.16
- Tollefsrud M.M., Latałowa M., van der Knaap W.O. et al. Late Quaternary history of North Eurasian Norway spruce (Picea abies) and Siberian spruce (Picea obovata) inferred from macrofossils, pollen and cytoplasmic DNA variation // J. Biogeography. 2015. V. 42. № 8. P. 1431–1442. https://doi.org/10.1111/jbi.12484
- Экарт А.К., Семериков В.Л., Ларионова А.Я., Кравченко А.Н. Изменчивость локуса mh44 митохондриальной ДНК в популяциях ели сибирской // Генетика. 2020. Т. 56. № 7. С. 842–847. https://doi.org/10.31857/S0016675820070036
- Semerikova S.A., Semerikov V.L., Lascoux M. Post- glacial history and introgression in Abies (Pinaceae) species of the Russian Far East inferred from both nuclear and cytoplasmic markers // J. Biogeography. 2011. V. 38. № 2. P. 326–340. https://doi.org/10.1111/j.1365-2699.2010.02394.x
- Semerikov V.L., Semerikova S.A., Putintseva Y.A. et al. Mitochondrial DNA in Siberian conifers indicates multiple postglacial colonization centers // Canadian J. Forest Res. 2019. V. 49. № 8. 875–883. https://doi.org/10.1139/cjfr-2018-0498
- Polezhaeva M.A., Lascoux M., Semerikov V.L. Cytoplasmic DNA variation and biogeography of Larix Mill. in Northeast Asia // Mol. Ecol. 2010. V. 19. № 6. P. 1239–1252. https://doi.org/10.1111/j.1365-294X.2010.04552.x
- Semerikov V.L., Semerikova S.A., Polezhaeva M.A. et al. Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): А range-wide analysis of cytoplasmic markers // Mol. Ecol. 2013. V. 22. № 19. P. 4958–4971. https://doi.org/10.1111/mec.12433
- Johnson J.S., Gaddis K.D., Cairns D.M., Krutov- sky K.V. Seed dispersal at alpine treeline: An assessment of seed movement within the alpine treeline ecotone // Ecosphere. 2017. V. 8. № 1. https://doi.org/10.1002/ecs2.1649
- Kruse S., Gerdes A., Kath N.J. et al. Dispersal distances and migration rates at the arctic treeline in Siberia – a genetic and simulation-based study // Biogeosciences. 2019. V. 16. № 6. P. 1211–1224. https://doi.org/10.5194/bg-16-1211-2019
- Piotti A., Leonardi S., Piovani P. et al. Spruce colonization at treeline: Where do those seeds come from? // Heredity. 2009. V. 103. № 2. P. 136–145. https://doi.org/10.1038/hdy.2009.42
- Pluess A.R. Pursuing glacier retreat: Genetic structure of a rapidly expanding Larix decidua population // Mol. Ecol. 2011. V. 20. № 3. P. 473–485. https://doi.org/10.1111/j.1365-294X.2010.04972.x
- Truong C., Palmé A.E., Felber F. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: Genetic and ecological study in northern Sweden // J. Evol. Biol. 2007. V. 20. № 1. P. 369–380. https://doi.org/10.1111/j.1420-9101.2006.01190.x
- Scotti I., Gugerli F., Pastorelli R. et al. Maternally and paternally inherited molecular markers elucidate population patterns and inferred dispersal processes on a small scale within a subalpine stand of Norway spruce (Picea abies [L.] Karst.) // Forest Ecol. and Management. 2008. V. 255. № 11. P. 3806–3812. https://doi.org/10.1016/j.foreco.2008.03.023
- Zhou Q., Karunarathne P., Andersson-Li L. et al. Recurrent hybridization and gene flow shaped Norway and Siberian spruce evolutionary history over multiple glacial cycles // Mol. Ecol. 2024. V. 33. № 17. P. 15. https://doi.org/10.1111/mec.17495
- Bastien D., Favre J.M., Collignon A.M. et al. Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.] // Theor. and Applied Genet. 2003. V. 107. № 3. P. 574–580. https://doi.org/10.1007/s00122-003-1284-2
- Putintseva Y.A., Bondar E.I., Simonov E.P. et al. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome // BMC Genomics. 2020. V. 21. № 1. https://doi.org/10.1186/s12864-020-07061-4
- Moiseev P.A., Semerikov V.L., Semerikova T.V. et al. Leading directions and effective distance of larch offspring dispersal at the upper treeline in the Northern and Polar Urals, Russia // Forest Ecosystems. https://doi.org/10.1016/j.fecs.2024.100218
- Sullivan A.R., Eldfjell Y., Schiffthaler B. et al. The mitogenome of Norway spruce and a reappraisal of mitochondrial recombination in plants // Genome Biol. and Evol. 2019. V. 12. № 1. P. 3586–3598. https://doi.org/10.1093/gbe/evz263
- Ларионова А.Я., Семерикова С.А., Экарт А.К. и др. Генетическое разнообразие, структура и дифференциация видового комплекса Picea abies–Picea obovata–Picea koraiensis по данным микросателлитного анализа хлоропластной ДНК // Генетика. 2024. Т. 60. № 11. C. 35–49. https://doi.org /10.31857/S0016675824110035
- Benson G. Tandem repeats finder: А program to analyze DNA sequences // Nucl. Ac. Res. 1999. V. 27. № 2. P. 573–580. https://doi.org/10.1093/nar/27.2.573
- Untergasser A., Cutcutache I., Koressaar T. et al. Primer3 – new capabilities and interfaces // Nucl. Ac. Res. 2012. V. 40. № 15. P. e115. https://doi.org/10.1093/nar/gks596
- Nei M. Molecular Evolutionary Genetics. 1987. New York: Columbia Univ. Press, 512 c.
- Excoffier L., Smouse P.E., Quattro J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Аpplication to human mitochondrial DNA restriction data // Genetics. 1992. V. 131. № 2. P. 479–491. https://doi.org/10.1093/genetics/131.2.479
- Excoffier L., Lischer H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. № 3. P. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
- Goldstein D.B., Ruiz Linares A.R., Cavallisforza L.L., Feldman M.W. An evaluation of genetic distances for use with microsatellite loci // Genetics. 1995. V. 139. P. 463–471. https://doi.org/10.1093/genetics/139.1.463
- Pons O., Petit R.J. Measuring and testing genetic differentiation with ordered versus unordered alleles // Genetics. 1996. V. 144. P. 1237–1245. https://doi.org/10.1093/genetics/144.3.1237
- Rohlf E.J. Numerical Taxonomy and Multivariate Analysis System. N.Y.: Exter Publ. LTD, 1988.
- Tsuda Y., Chen J., Stocks M. et al. The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): Cryptic refugia as stepping stones to the west? // Mol. Ecol. 2016. V. 25. № 12. P. 2773–2789. https://doi.org/10.1111/mec.13654
Дополнительные файлы


